Нарушение логики умозаключений, отсутствие логических связок, рассмотрение одного частного случая верного равенства вместо решения задачи. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нарушение логики умозаключений, отсутствие логических связок, рассмотрение одного частного случая верного равенства вместо решения задачи.



Пример 7.

Рис. 10.7.

Комментарий: Среди работ 2015 года ошибка такого рода приобрела популярность. Учащийся сводит глобальное решение уравнения к исследованию одного частного случая. В данном случае, рассматривая равенство суммы нулю только в том случае, когда каждое слагаемое равно нулю. При чем, эти размышления проводятся без логических связок «и» или «или», но по решению очевидно, учащийся имеет в виду связку «или», что делает рассуждение еще более неправильным. Оценка – 0 баллов.

Неточности и описки при решении тригонометрического уравнения или отборе корней уравнения из указанного промежутка

Пример 8.

Рис. 10.8.

Комментарий: На рисунке 10.8. приведено решение, содержащее изначально ошибку при раскрытии скобок в момент использования основного тригонометрического тождества, что возможно было бы приравнять к описке или вычислительной ошибке. Но, кроме этого, оба простейших тригонометрических уравнения не имеют решения в силу множества значений синуса, на что учащийся не обращает внимания и приводит неверные решения уравнения. Оценка – 0 баллов.

7. Нехарактерная в прошлых годах для задачи такого типа ошибка – неумение работать с иррациональными числовыми выражениями. В связи с этим, для многих учащихся решение квадратного уравнения с иррациональными коэффициентами представляло трудность (чаще всего решение не доводилось до конца).

Пример 9.

Рис.10.9.

Комментарий: В решении на рисунке 10.9. нет ошибок. Но решение не доведено до конца. Упростив полученные иррациональные выражения, учащийся смог бы сделать вывод о решениях уравнения. Оценка – 0 баллов.

8. По-прежнему, как и в прошлых годах, учащиеся теряют баллы в пункте б) решения задачи 15 по причине отсутствия обоснования отбора корней из промежутка. 1 балл за решение пункта б) выставляется при условии присутствия «следов» отбора корней, что зачастую не имело места в работах участников экзамена 2015 года.

Пример 10.

Рис.10.10.

Комментарий: В решении на рисунке 10.10. приведено верное, достаточно обоснованное решение пункта а). Но «следы» отбора корней из указанного промежутка отсутствуют (хотя в ответе указаны правильно отобранные корни для пункта б)), что дает эксперту право выставить только 1 балл.

 

Следует отметить, что по сравнению с 2014 годом при решении задачи 15 улучшилась ситуация с обоснованным отбором корней их промежутка. Учащиеся активно использовали различные способы отбора корней: перебор, решая двойное неравенство, используя единичную окружность или график функции. В основном это было успешно.

Задача 16

В 2015 году задача 16 (ранее задача С2) без изменения тематики (Прямые и плоскости в пространстве. Многогранники. Тела и поверхности вращения. Измерение геометрических величин. Координаты и векторы.) стала содержать два пункта с требованиями «доказать» и «найти». Каждый из пунктов независимо оценивался 1 баллом.

Задача 16 предполагала:

– владение как стереометрическими понятиями (такими как пирамида, высота пирамиды, перпендикулярность прямой и плоскости, угол между прямой и плоскостью и др.) так и планиметрическими (в частности, понятием прямоугольного треугольника, определениями тригонометрических функций острого угла прямоугольного треугольника и др.), а также фактами, связанными с этими понятиями;

– умение изображать пирамиду, проводить дополнительные построения, направленные на изображение и поиск угла между прямой и плоскостью;

– знание признаков перпендикулярности прямой и плоскости и умение их использовать при решении задачи;

– знание обратной теоремы Пифагора и умение ею воспользоваться в нужной ситуации;

– владение навыками нахождения угла по значению тригонометрической функции при выполнении вычислительной составляющей решения.

Приведем один из примеров задачи 16:

В основании четырехугольной пирамиды SABCD лежит прямоугольник ABCD со сторонами AB = 3 и BC = 4. Длины боковых ребер пирамиды , и .

а) Докажите, что SA – высота пирамиды.

б) Найдите угол между прямой SC и плоскостью ASB.



Поделиться:


Последнее изменение этой страницы: 2016-08-10; просмотров: 314; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.202.4 (0.003 с.)