Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Расширение диапазона регулирования приводовСодержание книги
Поиск на нашем сайте
Как известно (см. п/п. 3.9.1.6), диапазон регулирования приводов с нормальными множительными структурами при двух передачах в последней множительной группе (pk=2) не может превышать величины 64/φ, что для большинства случаев явно недостаточно. Применение прогрессивных инструментальных материалов и покрытий обуславливает необходимость увеличения диапазона регулирования в универсальных станках. Однако желание увеличить диапазон регулирования при сохранении нормальной равномерной структуры приводит к нарушению граничных условий по передаточным отношениям (см. п/п. 3.9.1.5) в последней множительной группе. При необходимости увеличения диапазона регулирования без нарушения граничных условий в последней множительной группе можно применить ряд структур и в частности: - приводы с переборами; - структуры с перекрытием части ступеней скорости шпинделя; - структуры с составным геометрическим рядом; - приводы со сложенной структурой. Наиболее эффективно применение таких структур при pk=2.
3.9.6.1 Приводы с переборами (ступенями возврата)
Для увеличения редукции и диапазона регулирования в качестве последней множительной группы часто используют перебор (см. рис. 2.3,г и 2.11,а,б). Поскольку перебор обычно имеет две последовательные замедляющие передачи, то для него может быть imin=1/16, а т.к. imax=1, то диапазон регулирования перебора Решение последнего выражения для ряда значений xmax дано на рис. 3.3,в. Поскольку перебор (ступень возврата) "возвращает" движение на ту же ось (на выходной вал, соосный с входным), то структурные сетки приводов с переборами строятся несимметрично. Для приводов по рис. 2.11 структурные сетки представлены на рис. 3.3. Проанализируем их: а) привод на 12 вариантов с одинарным перебором (см. рис. 2.11,а и 3.3,а)
При желании из каких либо соображений применить двойной перебор и допустимости меньшего числа вариантов структура, к примеру, 9=3(1)·3(3) лучше аналогичной нормальной. Для нее в то время как нормальная структура допускает что по величине обеспечиваемого диапазона значительно хуже.
Определение чисел зубьев колёс, образующих перебор, следует производить с учётом того, что модули передач перебора могут быть различными вследствие сильной редукции, осуществляемой первой передачей, и обусловленного этим значительного увеличения крутящего момента, передаваемого второй парой колёс. Модули обеих передач можно принять и одинаковыми за счёт более высокого качества материалов второй пары колёс или увеличения длины их зубьев.
3.9.6.2 Приводы с перекрытием (повторением) части ступеней скорости шпинделя
Для обеспечения перекрытия части ступеней скорости характеристику последней множительной группы уменьшают на несколько единиц. Рассмотрим получение структур с перекрытием при pk=2 на следующем примере. В структуре z = 16 = 4(1)·2(4)·2(8) с Д = 31,5 (т.к. то при φ = 1,26 обеспечивается ) вместо xk= 8 примем xk.пер= 4 и рассмотрим построенную для этого случая структурную сетку (рис. 3.4). Как видно, каждая из ступеней n5–n8 получается двумя комбинациями передач, в результате различных частот вращения фактически обеспечивается zф = z – zпер = 16 – 4 = 12, где zпер – количество перекрытых частот вращения. Развернутую структурную формулу можно представить в виде: zф=12=4(1)·2(4)·2(4). Диапазон регулирования привода с перекрытием: или (см. рис. 3.4) Приравняв показатели степеней в первом и втором выражениях, получим zф = 0,5z + xk.пер, откуда xk.пер = zф – 0,5z и z = 2(zф – xk.пер). Для структур с перекрытием φmax следует определять в последней (k-той) и предпоследней (k–1) множительных группах и принимать φ не превосходящим меньшего из двух полученных значений φmax. В рассматриваемом случае xmax (k) = xmax (k-1) = 4, и при φ =1,58 обеспечивается диапазон регулирования частот вращения шпинделя
Нормальная множительная структура на 12 вариантов z=12=3(1)·2(3)·2(6) (см. рис. 2.10) допускает и при φ =1,41 обеспечивает Как видно, структура с перекрытием обеспечивает диапазон регулирования в 3,5 раза больший при тех же 12 фактических вариантах. Для этого потребовалось усложнить конструкцию по рис. 2.10 всего на одну передачу.
Для обеспечения в структуре с перекрытием максимального диапазона при заданных z и кинематической схеме следует принять φ =φmax при хk.пер = xmax (k-1). При этом, если φmax не равно какому-либо стандартному значению, то, приняв стандартное φ<φmax, следует проверить возможность увеличения хk.пер по формуле полученной из выражения (см. п/п. 3.9.1.7) для данного случая. Покажем в качестве примера, как спроектировать структуры с максимальными диапазонами на базе приводов 12=3·2·2 и 24=4·3·2:
а) zф=3(1)·2(xk-1)·2(xk.пер.), zф=3(1)·2(3)·2(xk.пер.), т.к. pk-1 =2, xmax (k-1)=xk-1=3, то принимаем xk.пер =xmax (k-1) =3. Тогда zф=12/2+3=9 и 9=3(1)·2(3)·2(3). При φ =2
б) zф=4(1)·3(xk-1)·2(xk.пер), zф=4(1)·3(4)·2(xk.пер.), т.к. pk-1 2, то xmax (k-1) = (pk-1–1) ·xk-1=(3–1)·4=8 и xk.пер=xmax(k-1)=8. Тогда zф=24/2+8=20. При φ =1,26 Если принять xk.пер=lg8/lg1,26 9, то zф=24/2+9=21=4(1)·3(4)·2(9) и
Из всех возможных структур с перекрытием максимальный диапазон обеспечивают:
т.е. диапазон может быть увеличен примерно в 8 раз по сравнению с тем, какой обеспечивается нормальной множительной структурой. Использование структур с перекрытием позволяет строить приводы практически на любые числа вариантов (10, 11,13, 14, 15, 17 и т.п.).
|
||||||||||||||||
Последнее изменение этой страницы: 2016-08-10; просмотров: 360; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.3.235 (0.006 с.) |