Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Электронная подпись на базе шифра эль-гамаляСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Название ЕGSА происходит от слов ЕІ GаmаІ Signaturе Аlgorithm (алгоритм цифровой подписи Эль Гамаля). Идея ЕGSА основана на том, что для обоснования практической невозможности фальсификации цифровой подписи может быть использована более сложная вычислительная задача, чем разложение на множители большого целого числа,- задача дискретного логарифмирования. Кроме того, Эль Гамалю удалось избежать явной слабости алгоритма цифровой подписи RSА, связанной с возможностью подделки цифровой подписи под некоторыми сообщениями без определения секретного ключа. Рассмотрим подробнее алгоритм цифровой подписи Эль Гамаля. Для того чтобы генерировать пару ключей (открытый ключ - секретный ключ), сначала выбирают некоторое большое простое целое число Р и большое целое число G, причем G < Р. Отправитель и получатель подписанного документа используют при вычислениях одинаковые большие целые числа Р (~10308 или ~21024) и G (~10154 или ~2512), которые не являются секретными. Отправитель выбирает случайное целое число X, 1 < Х £ (Р-1), и вычисляет Y =GX mod Р. Число Y является открытым ключом, используемым для проверки подписи отправителя. Число Y открыто передается всем потенциальным получателям документов. Число Х является секретным ключом отправителя для подписывания документов и должно храниться в секрете. Для того чтобы подписать сообщение М, сначала отправитель хэширует его с помощью хэш-функции h() в целое число m: m = h(М), 1<m<(Р-1), и генерирует случайное целое число К, 1 < К < (Р -1), такое, что К и (Р-1) являются взаимно простыми. Затем отправитель вычисляет целое число а: а = GK mod Р и, применяя расширенный алгоритм Евклида, вычисляет с помощью секретного ключа Х целое число b из уравнения m = Х * а + К * b (mod (Р-1)). Пара чисел (а,b) образует цифровую подпись S: S = (а, b), проставляемую под документом М. Тройка чисел (М, а, b) передается получателю, в то время как пара чисел (Х, К).держится в секрете. После приема подписанного сообщения (М, а, b) получатель должен проверить, соответствует ли подпись S = (а, b) сообщению М. Для этого получатель сначала вычисляет по принятому сообщению М число m = h(М), т.е. хэширует принятое сообщение М. Затем получатель вычисляет значение А = Ya ab (mod Р) и признает сообщение М подлинным, если, и только если А = Gm (mod Р). Иначе говоря, получатель проверяет справедливость соотношения Ya ab (mod Р) = Gm (mod Р). Можно строго математически доказать, что последнее равенство будет выполняться тогда, и только тогда, когда подпись S=(а, b) под документом М получена с помощью именно того секретного ключа X, из которого был получен открытый ключ Y. Таким образом, можно надежно удостовериться, что отправителем сообщения М был обладатель именно данного секретного ключа X, не раскрывая при этом сам ключ, и что отправитель подписал именно этот конкретный документ М. Следует отметить, что выполнение каждой подписи по методу Эль Гамаля требует нового значения К, причем это значение должно выбираться случайным образом. Если нарушитель раскроет когда-либо значение К, повторно используемое отправителем, то он сможет раскрыть секретный ключ Х отправителя. Пример. Выберем: числа Р=11, G=2 и секретный ключ Х = 8. Вычисляем значение открытого ключа: Y = GX mod Р = Y = 28 mod 11=3. Предположим, что исходное сообщение М характеризуется хэш-значением m = 5. Дпя того чтобы вычислить цифровую подпись для сообщения М, имеющего хэш-значение m = 5, сначала выберем случайное целое число К = 9. Убедимся, что числа К и (Р -1) являются взаимно простыми. Действительно, НОД (9,10)=1. Далее вычисляем элементы а и b подписи: а = GK mod Р = 29 mod 11 = 6, элемент b определяем, используя расширенный алгоритм Евклида: m = Х * а + К * b (mod(Р-1)). При m = 5, а = 6, Х = 8, К = 9, Р = 11 получаем 5 = (6* 8+9* b)(mod 10) или 9* b=-43(mod 10). Решение: b = 3. Цифровая подпись представляет собой пару: а = 6, b = 3. Далее отправитель передает подписанное сообщение. Приняв подписанное сообщение и открытый ключ Y = 3, получатель вычисляет хэш-значение для сообщения М: m = 5,а затем вычисляет два числа: 1) Yaab (mod Р) = 36 * 63 (mod 11) =10 (mod 11); 2) Gm (mod Р) = 25 (mod 11) =10 (mod 11). Так как эти два целых числа равны, принятое получателем сообщение признается подлинным. Следует отметить, что схема Эль Гамаля является характерным примером подхода, который допускает пересылку сообщения М в открытой форме вместе с присоединенным аутентификатором (а, b). В таких случаях процедура установления подлинности принятого сообщения состоит в проверке соответствия аутентификатора сообщению. Схема цифровой подписи Эль Гамаля имеет ряд преимуццеств по сравнению со схемой цифровой подписи RSА: 1. При заданном уровне стойкости алгоритма цифровой подписи целые числа, участвующие в вычислениях, имеют запись на 25% короче, что уменьшает сложность вычислений почти в два раза и позволяет заметно сократить объем используемой памяти. 2. При выборе модуля Р достаточно проверить, что это число является простым и что у числа (Р-1) имеется большой простой множитель (т.е. всего два достаточно просто проверяемых условия). 3. Процедура формирования подписи по схеме Эль Гамаля не позволяет вычислять цифровые подписи под новыми сообщениями без знания секретного ключа (как в RSА). Однако алгоритм цифровой подписи Эль Гамаля имеет и некоторые. недостатки по сравнению со схемой подписи RSА. В частности, длина цифровой подписи получается в 1,5 раза больше, что, в свою очередь, увеличивает время ее вычисления. 49.Управление криптографическими ключами. Генерация, хранение и распределение ключей. Управление ключами Кроме выбора подходящей для конкретной ИС криптографической системы, важная проблема - управление ключами. Как бы ни была сложна и надежна сама криптосистема, она основана на использовании ключей. Если для обеспечения конфиденциального обмена информацией между двумя пользователями процесс обмена ключами тривиален, то в ИС, где количество пользователей составляет десятки и сотни управление ключами - серьезная проблема. Под ключевой информацией понимается совокупность всех действующих в ИС ключей. Если не обеспечено достаточно надежное управление ключевой информацией, то завладев ею, злоумышленник получает неограниченный доступ ко всей информации. Управление ключами - информационный процесс, включающий в себя три элемента: * генерацию ключей; * накопление ключей; * распределение ключей. Рассмотрим, как они должны быть реализованы для того, чтобы обеспечить безопасность ключевой информации в ИС. Генерация ключей В самом начале разговора о криптографических методах было сказано, что не стоит использовать неслучайные ключи с целью легкости их запоминания. В серьезных ИС используются специальные аппаратные и программные методы генерации случайных ключей. Как правило используют датчики ПСЧ. Однако степень случайности их генерации должна быть достаточно высоким. Идеальным генераторами являются устройства на основе «натуральных» случайных процессов. Например, появились серийные образцы генерации ключей на основе белого радиошума. Другим случайным математическим объектом являются десятичные знаки иррациональных чисел, например p или е, которые вычисляются с помощью стандартных математических методов. В ИС со средними требованиями защищенности вполне приемлемы программные генераторы ключей, которые вычисляют ПСЧ как сложную функцию от текущего времени и (или) числа, введенного пользователем. Накопление ключей Под накоплением ключей понимается организация их хранения, учета и удаления. Поскольку ключ является самым привлекательным для злоумышленника объектом, открывающим ему путь к конфиденциальной информации, то вопросам накопления ключей следует уделять особое внимание. Секретные ключи никогда не должны записываться в явном виде на носителе, который может быть считан или скопирован. В достаточно сложной ИС один пользователь может работать с большим объемом ключевой информации, и иногда даже возникает необходимость организации мини-баз данных по ключевой информации. Такие базы данных отвечают за принятие, хранение, учет и удаление используемых ключей. Итак, каждая информация об используемых ключах должна храниться в зашифрованном виде. Ключи, зашифровывающие ключевую информацию называются мастер-ключами. Желательно, чтобы мастер-ключи каждый пользователь знал наизусть, и не хранил их вообще на каких-либо материальных носителях. Очень важным условием безопасности информации является периодическое обновление ключевой информации в ИС. При этом переназначаться должны как обычные ключи, так и мастер-ключи. В особо ответственных ИС обновление ключевой информации желательно делать ежедневно. Вопрос обновления ключевой информации связан и с третьим элементом управления ключами - распределением ключей. Распределение ключей Распределение ключей - самый ответственный процесс в управлении ключами. К нему предъявляются два требования: Оперативность и точность распределения Скрытность распределяемых ключей. В последнее время заметен сдвиг в сторону использования криптосистем с открытым ключом, в которых проблема распределения ключей отпадает. Тем не менее распределение ключевой информации в ИС требует новых эффективных решений. Распределение ключей между пользователями реализуются двумя разными подходами: 1. Путем создания одного ли нескольких центров распределения ключей. Недостаток такого подхода состоит в том, что в центре распределения известно, кому и какие ключи назначены и это позволяет читать все сообщения, циркулирующие в ИС. Возможные злоупотребления существенно влияют на защиту. 2. Прямой обмен ключами между пользователями информационной системы. В этом случае проблема состоит в том, чтобы надежно удостоверить подлинность субъектов. В обоих случаях должна быть гарантирована подлинность сеанса связи. Это можно обеспечить двумя способами: 1. Механизм запроса-ответа, который состоит в следующем. Если пользователь А желает быть уверенным, что сообщения который он получает от В, не являются ложными, он включает в посылаемое для В сообщение непредсказуемый элемент (запрос). При ответе пользователь В должен выполнить некоторую операцию над этим элементом (например, добавить 1). Это невозможно осуществить заранее, так как не известно, какое случайное число придет в запросе. После получения ответа с результатами действий пользователь А может быть уверен, что сеанс является подлинным. Недостатком этого метода является возможность установления хотя и сложной закономерности между запросом и ответом. 2. Механизм отметки времени («временной штемпель»). Он подразумевает фиксацию времени для каждого сообщения. В этом случае каждый пользователь ИС может знать, насколько «старым» является пришедшее сообщение. В обоих случаях следует использовать шифрование, чтобы быть уверенным, что ответ послан не злоумышленником и штемпель отметки времени не изменен. При использовании отметок времени встает проблема допустимого временного интервала задержки для подтверждения подлинности сеанса. Ведь сообщение с «временным штемпелем» в принципе не может быть передано мгновенно. Кроме этого компьютерные часы получателя и отправителя не могут быть абсолютно синхронизированы. Какое запаздывание «штемпеля» считать подозрительным. Поэтому в реальных ИС, например в системах оплаты кредитных карточек используется именно второй механизм установления подлинности и защиты от подделок. Используемый интервал составляет от одной до нескольких минут. Большое число известных способов кражи электронных денег, основано на «вклинивании» в этот промежуток с подложными запросами на снятии денег. Для обмена ключами можно использовать криптосистемы с открытым ключом, используя тот же алгоритм RSA. Но весьма эффективным оказался алгоритм Диффи-Хелмана, позволяющий двум пользователям без посредников обменяться ключом, который может быть использован затем для симметричного шифрования.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 1235; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.135.214 (0.013 с.) |