Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Строение и свойства аминокислот, пептидов и белков.↑ ⇐ ПредыдущаяСтр 6 из 6 Содержание книги
Поиск на нашем сайте
Дата _________ Лабораторная работа № ________ Строение и свойства аминокислот, пептидов и белков. Цель работы: Приобрести навыки экспериментальной идентификации функциональных групп в аминокислотах. Научиться экспериментально доказывать наличие пептидной связи и индивидуальных аминокислот в белках и полипептидах. Оборудование и реактивы: Штатив для пробирок; пробирки одинакового диаметра или градуированные, бюретки; штативы Бунзена; палочки стеклянные. Раствор глицина 1%, растворы яичного белка, альбумина и желатина, растворы NaNO2 (5%), CuSO4 (5%), NaOH (10%), Pb(CH3OOH)2 (10%), уксусная кислота (конц.), индикатор – метиловый красный. Сущность работы: 1) При взаимодействии a-аминокислот с альдегидами образуются замещённые имины (основания Шиффа) через стадию образования карбиноламинов.
2) Дезаминирование аминокислот под действием азотистой кислоты приводит к образованию соответствующих гидроксикислот.
3) При взаимодействии биурета с сульфатом меди в щелочной среде образуется хелатный комплекс меди фиолетового цвета. Данная реакция является качественной на пептидную связь. 4) Для обнаружения ароматических и гетероциклических a-аминокислот используется ксантопротеиновая реакция (на фенилаланин, тирозин, гистидин, триптофан) 5) В основе специфического обнаружения остатков серусодержащих аимнокислот (цистеина, метионина) в белках лежит реакция образования нерастворимых меркаптидов свинца (II). Образующиеся соли выпадают в виде осадка черного цвета. Реакция служит качественной на присутствие цистеина в белках, кроме того образование устойчивых меркаптидов является химической основой токсического действия солей свинца на организм. Ход работы: Опыт I. Реакция глицина с формальдегидом. В пробирку поместите 5 капель 1% раствора глицина и добавьте 1 каплю индикатора метилового красного. Раствор окрашивается в жёлтый цвет (нейтральная среда). К полученной смеси добавьте равный объём формалина. Наблюдайте изменение окраски индикатора. Сделайте вывод о реакции среды в растворе. Данная реакция под названием «формольное титрование» используется для количественного определения карбоксильных групп a-аминокислотах. Уравнение реакции:
Наблюдения:
Опыт 2. Реакция глицина с азотистой кислотой. В пробирку поместите 5 капель 1% раствора глицина и равный объем 5% раствора нитрита натрия. Добавьте 2 капли концентрированной уксусной кислоты и осторожно взболтайте смесь. Данная реакция используется для количественного определения аминогрупп в аминокислотах. Уравнение реакции:
Наблюдения:
Опыт 3. Биуретовая реакция на пептидную связь. В 3 пробирки поместите по 5-6 капель растворов яичного белка, альбумина и желатина, добавьте равный объем 10% раствора гидроксида натрия и по стенке добавьте 1-2 капли раствора сульфата меди (II). Наблюдается появление красно-фиолетовой окраски. Сделайте вывод о наличии пептидной связи в белках и полипептидах. Уравнение реакции:
Наблюдения:
Опыт 4. Ксантопротеиновая реакция белков. В 3 пробирки поместите по 10 капель растворов яичного белка, альбумина и желатина и 2-3 капли концентрированной азотной кислоты. Содержимое пробирки осторожно нагрейте, все время встряхивая. Раствор и осадок окрашиваются в желтый цвет. Охладив пробирку, осторожно добавьте 2-3 капли 10% раствора гидроксида натрия до появления ярко-оранжевой окраски. О наличии каких аминокислот в белках и полипептидах свидетельствует данная реакция? Уравнение реакции:
Наблюдения:
Опыт 5. Реакция на присутствие серусодержащих a-аминокислот (реакция Фоля) В 3 пробирки поместите по 10 капель растворов яичного белка, альбумина и желатина и вдвое больший объем 10% раствора гидроксида натрия. Содержимое пробирки перемешайте, нагрейте до кипения (1-2 мин). К полученному щелочному раствору добавьте 5 капель 10% ацетата свинца (II) и вновь прокипятите. О наличии каких аминокислот в белках и полипептидах свидетельствует данная реакция? Уравнение реакции:
Наблюдения:
Выводы:
Занятие 29 Свойства растворов биополимеров Дата _________ Лабораторная работа Свойства растворов ВМС. Определение изоэлектрической точки белка по степени набухания. Цель работы: Приобрести навыки экспериментального определения величины набухания полимеров и изоэлектрической точки (ИЭТ) белков. Оборудование и реактивы: Желатин порошкообразный; кусочки резины; толуол; растворы сульфата натрия (c(l/2Na2SO4)=1 моль/л и c(l/2Na2SO4)=0,0025 моль/л); раствор иодида натрия (c(NaI)=0,1 моль/л); буферные растворы с рН от 1 до 12; гидрозоль гидроксида железа (Ш); 0,1%-й раствор желатина. Сущность работы: Ход работы: Опыт 1. Изучение влияния природы среды на набухание. Берут четыре сухие пробирки одинакового диаметра и нумеруют их. В пробирки №1 и №2 помещают примерно одинаковое количество порошкообразного желатина (0,5 см по высоте пробирки), в пробирки №3 и №4 — по одинаковому кусочку резины. В пробирки №1 и №3 отмеривают из бюретки по 5,0 мл дистиллированной воды, в пробирки №2 и №4 приливают толуол в таком же объеме. Через 20 мин измеряют высоту слоя набухшего желатина и. сравнивают размеры кусочков резины. Результаты наблюдений записывают в таблицу.
Экспериментальные данные
По окончании работы толуол выливают в специальную склянку для слива органических растворителей. Опыт 2. Изучение влияния электролитов на величину набухания ВМС. В три сухие пронумерованные пробирки одинакового диаметра помещают примерно одинаковое количество желатина (0,5 см по высоте пробирки). С помощью полоски миллиметровой бумаги измеряют высоту слоя сухого желатина до набухания (h0); результаты записывают в таблицу. Пробирки примерно до середины заполняют из бюреток: 1 — дистиллированной водой, 2 — раствором сульфата натрия с концентрацией 1,0 моль/л, 3 — раствором иодида натрия с концентрацией 1,0 моль/л. Через 1—2 мин после заполнения пробирок содержимое их осторожно перемешивают стеклянной палочкой, чтобы набухшие частицы верхнего слоя желатина не затрудняли доступ жидкости к частицам нижнего слоя. Примерно через 20 мин осторожным постукиванием по верхней части пробирки добиваются осаждения всплывших частиц желатина и измеряют высоту слоя набухшего желатина (h). Рассчитывают степень набухания желатина в воде и растворах электролитов. Результаты измерений и расчетов записывают в таблицу. Экспериментальные данные
Опыт 3. Определение изоэлектрической точки желатина. В шесть сухих пронумерованных пробирок (одинакового диаметра или градуированные) помещают примерно одинаковое количество желатина (0,5 мл по высоте пробирки); с помощью полоски миллиметровой бумаги измеряют высоту сухого желатина в каждой пробирке (h0) и результаты измерений записывают в таблицу. В каждую из пробирок осторожно по стенке наливают из бюреток по 7,0 мл растворов с различными значениями рН. Через 1—2 мин содержимое пробирок осторожно перемешивают, а через 20 мин осаждают всплывшие частицы желатина (как в опыте 2) и измеряют высоту слоя набухшего желатина (h); результаты измерений записывают в таблицу. Экспериментальные данные
Обработка результатов эксперимента: Для определения ИЭТ желатина строят график зависимости Dh = f (pH). ИЭТ находят, опустив из точки минимума на кривой перпендикуляр на ось абсцисс.
График:
Выводы:
Занятие 30 Дата _________ Лабораторная работа № _______
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 194; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.239.135 (0.006 с.) |