Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Превращения закаленной стали при отпуске. Влияние температуры отпуска на свойства сталей. Выбор вида отпуска в зависимости от назначения деталей.Содержание книги
Поиск на нашем сайте
Отпуск – термическая обработка стали, заключающаяся в нагреве закаленной на мартенсит стали до температуры ниже критической, выдержки при этой температуре и охлаждении на воздухе. Цель отпуска: Улучшение механических свойств закаленной стали, снижение хрупкости, повышение пластичности, некоторое снижение твердости и прочности. Закалка + Отпуск = Улучшение свойств стали. Исходная структура – мартенсит закалки: высокое содержание углерода, сильно искаженная кристаллическая решетка, значительное напряжение в структуре, высокая степень неравновесности. Виды отпуска: 1) Низкотемпературный отпуск (низкий отпуск): Исходная структура – мартенсит закалки, температура отпуска tотп = 150–250° C. В результате отпуска – мартенсит отпуска и карбиды железа. При повышении температуры активизируется диффузия. Часть атомов углерода покидает кристаллы мартенсита, концентрируется в локальных областях, где образуется карбид железа. Размеры этих карбидов очень небольшие. Результат низкого отпуска: уменьшение степени пересыщенности мартенсита и, как следствие, снижение внутреннего напряжения, немного снижается твердость и прочность. Мартенситная структура в целом сохраняется, снижается склонность стали к хрупкому разрушению. 2) Среднетемпературный отпуск (средний отпуск): Исходная структура – мартенсит закалки, температура отпуска tотп = 250–450° C. В результате отпуска – тростит отпуска. При повышении температуры активизируется диффузия. Диффузия углерода при такой температуре достаточна для превращения мартенсита в перлитную структуру, но не достаточна для перемещения углерода на большие расстояния. В итоге образуется смесь феррита и цементита. Особенности среднего отпуска: маленький размер кристаллов, кристаллы равноостные, мелкодисперсные. Такая структура называется тростит отпуска. Такая структура обладает высокой прочностью и твердостью и достаточным запасом пластичности. Используется для ответственных, сильно нагреваемых деталей (пружины, рессоры). 3) Высокотемпературный отпуск (высокий отпуск): Исходная структура – мартенсит закалки, температура отпуска tотп = 450–650° C. В результате отпуска – сорбит отпуска.Процессы аналогичны среднему отпуску, но увеличивается расстояние, на которое смещаются атомы углерода. Диффузия происходит интенсивнее, чем в случае среднетемпературного отпуска, увеличиваются размеры кристаллов феррита и цементита. Такая структура называется сорбит отпуска. В результате высокого отпуска повышается пластичность, снижается хрупкость, одновременно уменьшается твердость и прочность. Используется для ответственных, сильно нагреваемых деталей под ударными нагрузками.
2)Закономерности усталостного разрушения. Пути повышения предела выносливости. (не до конца…) Билет23 Рекристаллизация холоднодеформированных металлов и сплавов. Изменение структуры и свойств при рекристаллизации. Факторы, влияющие на размер зерна после рекристаллизации. Горячая и холодная обработка давлением.
Рекристаллизация – процесс формирования и роста новых недеф. зерен с пониженной плотностью дислокаций, разделенных большеугловыми границами при нагреве наклепанного металла до определенной температуры.
Первичная рекристаллизация (обработки) заключается в образовании центров кристаллизации и росте новых равновесных зерен с неискаженной кристаллической решеткой. Новые зерна возникают у границ старых зерен и блоков, где решетка была наиболее искажена. Количество новых зерен постепенно увеличивается и в структуре не остается старых деформированных зерен. Приводит к снижению прочностных свойств и повышению пластичности.
Собирательная рекристаллизация заключается в самопроизвольном росте одних рекристалл. зерен за счет соседних путем перемещения большеугловых границ. Равноосная мелкозернистая структура. Происходит при повышенных температурах нагрева.
Вторичная рекристаллизация – образуется структура с высокой неоднородностью зерен и пониженными механическими свойствами. Полиэдрическая структура. При высоких температурах. Температура начала рекристаллизации связана с температурой плавления: Трек=аТплавл. Вольфрам, молибден – самые тугоплавкие Me. Если чистый Me - a 0,2, механические смеси - a 0,4, твѐрдые растворы - a 0,6, химические соединения - a 0,8 Основными факторами, определяющими величину зерен металла при рекристаллизации, являются температура, продолжительность выдержки при нагреве и степень предварительной деформации
С повышением температуры происходит укрупнение зерен, с увеличением времени выдержки зерна также укрупняются. При холодном деформировании (не выше 0,3Тпл) увеличиваются прочностные характеристики и понижается пластичность и ударная вязкость. Металлы интенсивно наклепываются в начальной стадии деформирования, затем при возрастании деформации механические свойства изменяются незначительно. Наклеп снижает пластичность металла.
Холодную обработку давлением проводят при температурах ниже температуры рекристаллизации, и она сопровождается наклепом. Горячую обработку давлением проводят при температурах выше температуры рекристаллизации, поэтому после окончания деформации наклеп уменьшается рекристаллизационными процессами.
2)Закономерности усталостного изнашивания в условиях высоких контактных нагрузок. Подшипниковые стали. Состав, марки, предварительная и упрочняющая обработка. Основным эксплуатационным свойством подшипников качения, как и смазываемых колес, является контактная выносливость. Подшипники качения работают, как правило, при низких динамических нагрузках, что позволяет изготовлять их из сравнительно хрупких высокоуглеродистых сталей после сквозной закалки и низкого отпуска. Для производства шариков, роликов и колец подшипников применяют недорогие технологичные хромистые стали ШХ4, ШХ15, ШХ15ГС и ШХ20ГС, содержащие примерно 1% С (ГОСТ 801-78). В обозначении марок буква Ш означает подшипниковую сталь; Х – наличие хрома; число – его содержание в процентах (0,4;1,5;2,0); ГС – легирование марганцем (до 1,7%) и кремнием (до 0,85%) Прокаливаемость сталей увеличивается по мере повышения концентрации хрома. Сталь ШХ15 предназначена для изготовления деталей подшипников поперечным сечением 10-20 мм; более легированные стали ШХ15СГ и ШХ20СГ – для деталей, прокаливающихся на большую глубину (свыше 30 мм). Стали поставляют после сфероидизирующего отжига со структурой мелкозернистого перлита (179 - 217 НВ) и повышенными требованиями к качеству металла. В них строго регламентированы карбидная неоднородность и загрязненность неметаллическими включениями, так как, выходя на рабочую поверхность, они служат концентраторами напряжений и способствуют более быстрому развитию усталостного выкрашивания. Для изготовления высокоскоростных подшипников применяют стали после электрошлакового переплава (к марке таких сталей добавляют бу кву Ш, например ШХ15-Ш), отличающиеся наибольшей однородностью строения. Такие стали необходимы также для изготовления высокоточных приборных подшипников, детали которых тщательно полируют с тех», чтобы обеспечить минимальный коэффициент трения. Это возможно лишь при высокой чистоте металла по неметаллическим включениям. Детали подшипников подвергают типичной для заэвтектоидных сталей термической обработке: неполной закалке от 820 - 850 °С и низкому отпуску при 150 - 170 °С. После закалки в структуре сталей сохраняется остаточный аустенит (8 - 15%), превращение которого может вызвать изменение размеров деталей подшипников. Летали крупногабаритных роликовых подшипников диаметром 0,5 -2 м (для прокатных станов, электрических генераторов) изготовляют из сталей 12ХНЗА, 12Х2Н4А, подвергая их цементации на большую глубину (3 - 6 мм).
Для подшипников, работающих в агрессивных средах, применяют коррозионно-стойкую хромистую сталь 95Х18 (0,95% С, 18% Сr).
(не всё…)
Билет24
|
|||||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 379; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.234.125 (0.01 с.) |