Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устройство биполярного транзистораСодержание книги
Поиск на нашем сайте
Биполярным транзистором называют полупроводниковый прибор с двумя взаимодействующими p-n- переходами и тремя или более выводами. Он имеет трехслойную структуру, состоящую из чередующихся областей с различными типами электропроводности: n-p-n или p-n-p. Устройство и условные графические обозначения биполярных транзисторов представлены рис. 4.1.1, а, б. Внешний вид некоторых биполярных транзисторов представлен на рис. 4.1.2.
Рисунок 4.1.1. Устройство и условные графические обозначения биполярных транзисторов: а): n-p-n – структуры; б) p-n-p – структуры.
Биполярный транзистор представляет собой кристалл полупроводника, состоящий из трех слоев с чередующейся проводимостью и снабженный тремя выводами (электродами) для подключения к внешней цепи. Поскольку до настоящего времени биполярные транзисторы являются наиболее распространенным видом транзисторов, часто их называют просто транзисторами, опуская термин биполярный. На рис. 4.1.1, а и б показаны схемное обозначение двух типов транзисторов р-n-р-типа со слоями р, n и р и n-р-n- типа со слоями n, р и n. Крайние слои называют эмиттером (Э) и коллектором К), между ними находится база (Б). В трехслойной структуре имеются два электронно-дырочных перехода: эмиттерный переход между эмиттером и базой и коллекторный переход между базой и коллектором. В качестве исходного материала транзисторов используют германий или кремний. При изготовлении транзистора обязательно должны - быть выполнены два условия:
Рисунок 4.1.2. Внешний вид некоторых биполярных транзисторов.
1) толщина базы (расстояние между эмиттерным и коллекторным переходам) должна быть малой по сравнению с длиной свободного пробега носителей заряда 2) концентрация примесей (и основных носителей) заряда в эмиттере должна быть значительно больше, чем в базе (Nа >> Nд в р-n-р транзисторе). Рассмотрим принцип действия р-n-р транзистора. Транзистор включают последовательно с сопротивлением нагрузки Rк в цепь источника коллекторного напряжения Ек. На вход транзистора подается управляющая ЭДС, как показано на рис. 4.1.3,а, б. Такое включение транзистора, когда входная (ЕБ, RБ) и выходная (ЕК, RК) цепи имёют общую точку — эмиттер, является наиболее распространенным и называется включением с общим эмиттером (ОЭ). При отсутствии напряжений (ЕБ=0, ЕК =0) эмиттерный и коллекторный переход находятся в состоянии равновесия, токи через них равны нулю. Оба перехода имеют двойной электрический слой, состоящий из ионов примесей, и потенциальный барьер Полярность внешних источников ЕБ и Ек выбирается такой, чтобы на эмиттером переходе было прямое напряжение (минус источника ЕБ подан на
Рисунок 4.1.3: а) распределение токов, б) распределение потенциалов в транзисторе p-n-p-типа.
базу, плюс — на эмиттер), а на коллекторном переходе — обратное напряжение (минус источника Ек—на коллектор, плюс—на эмиттер), причем напряжение |Uкэ|>|Uбэ| (напряжение на коллекторном переходе
Uкб= Uкэ-Uбэ
При таком включении источников ЕБ и Ек распределение потенциалов в транзисторе имеет вид, показанный на рис. 4.1.3, б сплошной линией. Потенциальный барьер эмиттерного перехода, смещенного в прямом направлении, снижается, на коллекторном переходе потенциальный барьер увеличивается. В результате приложения к эмиттерному переходу прямого напряжения начинается усиленная диффузии (инжекция) дырок из эмиттера в базу. Электронной составляющей диффузионного тока через эмиттерный переход можно пренебречь, так как pр>>nn, поскольку выше оговаривалось условие Небольшая часть дырок, инжектированных эмиттером, попадает в центры рекомбинации и исчезает, рекомбинации с электронами. Заряд этих дырок остается в базе, и для восстановления зарядной нейтральности базы из внешней цепи за счет источника ЕБ в базу поступают электроны. Поэтому ток базы представляет собой ток, рекомбинации Iрек=IЭ(1-α). Помимо указанных основных составляющих тока транзистора надо учесть возможность перехода не основных носителей, возникающих в базе и коллекторе в результате генерации носителей, через коллекторный переход, к которому приложено обратное напряжение. Этот малый ток (переход дырок из базы в коллектор и электронов из коллектора в базу) аналогичен обратному току р-n перехода, он также называется обратным током коллекторного перехода или тепловым током и обозначается IКБО (рис. 4.1.3,а), Таким образом, полный коллекторный ток, определяемый движением всех носителей через коллекторный переход:
ІК = αІЭ+ ІКБО (4.1.1)
Из закона Кирхгофа для токов (IБ = Iэ—Iк) и выражения (4.1.1) следует
ІБ = (1 - α) ІЭ – ІКБО (4.1.2)
Выражения (4.1.1), (4.1.2) показывают, что токи в транзисторе связаны линейными соотношениями. Преобразуем (4.1.1) так, чтобы выявить зависимость коллекторного тока от тока базы. Для этого из (1.3) получим: и подставим это значение в (1.2)
ІЭ = (ІБ + ІКБО )/(1 - α) ІК =
Обозначим коэффициент передачи тока базы β = ΔІК ⁄ΔІБ = а ток IКБО (1+
ІК = βІБ + (β + 1) ІКБО = βІБ + ІКЭО(4.1.3)
Если учесть, что ІКЭО мал и ΔIК/ΔIБ≈ IК/IБ зависимость тока коллектора от тока базы может быть записана и в виде
IК=h21эIБ (4.1.4)
Где h21э Транзистор является трехполюсником, поэтому источник входного сигнала и нагрузка могут быть подключены к нему различным образом. В наиболее распространенном включении по схеме с общим эмиттером (рис. 4.1.3) источником входного напряжения (UБЭ является ЕБ, входным током базовый ток IБ . Нагрузка включается в коллекторную цепь. Эмиттер является общей точкой для входной и выходной цепей. Изменяя малый ток базы (входной ток) на значение ΔIБ, тем самым изменяем выходной ток Iк в соответствии с выражением (4.1.4). При этом изменяется и падение напряжения на нагрузке на значение ΔІКRК изменяя мощность, выделяемая на резисторе RК. Таким образом, при изменении малого тока IБ в цепи источника малого напряжения ЕБ изменяется отдача мощности источником Ек в резистор Rк, причем ΔIК>>ΔIБ ; ΔІКRК>>ΔUЭБ Принцип действия транзистора n-р-n-типа аналогичен, лишь направление токов, знаки носителей заряда и полярность приложенных напряжений противоположны тем, которые имеют место в рассмотренном р-n-р транзисторе.
|
||||
|
Последнее изменение этой страницы: 2016-07-16; просмотров: 267; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.220 (0.006 с.) |