Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экстраполяция временных рядов↑ Стр 1 из 5Следующая ⇒ Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
ЭКСТРАПОЛЯЦИЯ ВРЕМЕННЫХ РЯДОВ Сущность экстраполяции Методы экстраполяции тенденций в развитии экономических процессов являются, пожалуй, наиболее часто применяемыми среди всей совокупности методов прогнозирования. В общем случае под экстраполяцией принято понимать распространение (возможно, с преобразованиями, осуществляемыми посредством формальных методов) количественных характеристик каких-либо объектов или процессов, наблюдаемых в определенных временных, пространственных либо других границах за эти границы. Формально это означает, что значения некоторой функции определяются за границей области ее определения. В экономических прогнозных расчетах использование экстраполяции имеет в своей основе предположение о том, что рассматриваемый процесс изменения прогнозируемой переменной представляет собой сочетание двух составляющих: регулярной и случайной: (2.1) Считается, что регулярная составляющая представляет собой гладкую функцию от аргумента, в качестве которого обычно рассматривается время. Функция определяется с точностью до неизвестного вектора параметров , который остается неизменным на периоде упреждения прогноза. Эту составляющую называют трендом, или уровнем детерминированной основы процесса, или основной тенденцией. Под всеми этими терминами понимается интуитивное представление о какой-то «очищенной» от случайных колебаний закономерности анализируемого процесса. Интуитивное – потому, что для большинства экономических процессов нельзя однозначно отделить тренд от случайной составляющей. Все зависит от того, какую цель преследует подобное разделение, и с какой точностью его хотят осуществить. Случайная составляющая обычно считается ненаблюдаемым некоррелированным случайным процессом с нулевым математическим ожиданием и ограниченной дисперсией. Его оценки получаются только после построения модели и в дальнейшем используются для определения интервальных характеристик точности прогноза. Успех применения эктраполяционных методов прогнозирования в значительной степени зависит от выбора наилучшего в некотором смысле описания (вида) тренда.
Метод наименьших квадратов (МНК) Простейшую экстраполяционную модель, отражающую взаимосвязь прогнозируемого показателя с некоторой переменной, формирующей динамику этого показателя, можно записать в виде , (2.21) где – значение -го наблюдения прогнозируемого показателя; – значение переменой, формирующей динамику показателя в момент времени (для трендовых моделей, являющихся частным случаем экстраполяционных, ); – вектор неизвестных параметров, оцениваемых по данным временного ряда; – функция, определяющая структуру трендовой модели (линейную, степенную и т.п.); – ненаблюдаемая случайная величина, представляющая собой ту часть вариации показателя , которая не объясняется соответствующими изменениями переменной . Чем ниже уровень вариаций около 0 возможных значений случайной величины , тем точнее модель отражает взаимодействие переменной с прогнозируемым показателем , т.е. параметры модели должны подбираться таким образом, чтобы минимизировать сумму квадратов отклонений (случайных составляющих ) . (2.22) В общем случае поиск оптимальных параметров сводится к решению нелинейной экстремальной задачи. Обычно рассматривают линейный случай (2.23) который значительно упрощает решение этой задачи. Рассмотрим применение метода наименьших квадратов к случаю построения линейного тренда. Для этого случая (2.22) перепишется в виде (2.24) Применяя дифференциальное исчисление для минимизации (2.24) и дифференцируя по и , получаем систему линейных уравнений (2.25) Разделив левую и правую части этой системы на число наблюдений и произведя замену: ; ; ; , перепишем систему (2.25) в виде (2.26) РЕГРЕССИОННЫЙ АНАЛИЗ И ПРОГНОЗ Множественная регрессия Основные понятия регрессионного анализа Рассмотренные в предыдущем разделе экстраполяционные модели иногда называют наивными в силу того, что в них не учитывается взаимодействие экономических показателей друг с другом. В реальности значение любого экономического показателя зависит от такого большого количества факторов, которое невозможно учесть при построении прогнозных моделей. Но в этом и нет необходимости, поскольку лишь ограниченное количество таких факторов существенно воздействует на моделируемый показатель. Доля влияния остальных столь незначительна, что их воздействием можно пренебречь без особого искажения реальной зависимости. Модели с ограниченным числом доминирующих факторов создают реальные предпосылки для их применения в анализе, прогнозировании и управлении в различных экономических ситуациях. Экономистами было исследовано достаточно большое число устоявшихся связей между различными показателями, которые пытаются использовать в задачах обоснования социально-экономических прогнозов. Однако даже устоявшиеся зависимости в одних и тех же ситуациях могут проявляться по-разному. В этой неоднозначности и состоит принципиальное отличие зависимостей между экономическими показателями от строгих функциональных зависимостей, используемых в естественных науках. Подобная неоднозначность объясняется целым рядом причин, в частности, тем, что, во-первых, при анализе влияние одной переменной на другую не учитывается ряд других факторов; во-вторых, это влияние может быть не прямым, а проявляться через цепочку других факторов; в-третьих, многие такие воздействия носят случайный характер и т.д. Поэтому в экономике принято рассматривать не функциональные, а статистические (корреляционные и регрессионные) зависимости. Корреляционная зависимость устанавливается в тех случаях, когда переменные и считаются равноценными в том смысле, что они не подразделяются на независимую (причину) и зависимую (следствие). При решении прогнозных задач самостоятельной роли корреляционный анализ не играет и чаще всего используется как инструмент отбора значимых факторов. Регрессионная зависимость определяется в тех случаях, когда одна из переменных классифицируется как независимая (объясняющая), а другая – как зависимая (объясняемая). Изменение первой из них служит причиной для изменения второй. Например, рост доходов ведет к увеличению потребления, рост цены – к снижению спроса, снижение процентной ставки – к увеличению инвестиций и т.д. Однако такая зависимость является неоднозначной в том смысле, что каждому конкретному значению объясняющей переменной соответствует не одно, а множество значений объясняемой переменной из некоторой области. Другими словами, в данном случае каждому конкретному значению объясняющей переменной соответствует некоторое вероятностное распределение зависимой переменной. Поэтому целесообразно строить прогнозы с учетом того, что объясняющая переменная влияет на зависимую переменную «в среднем». Зависимость такого типа принято записывать в виде соотношения , (3.1) называемого функцией регрессии на . Таким образом, под регрессией понимается функциональная зависимость между объясняющей переменной и условным математическим ожиданием (средним значением) зависимой переменной. Пытаясь отразить тот факт, что реальные зависимости не всегда совпадают с ее условным математическим ожиданием и могут быть различными при одном и том же значении объясняющей переменной, в рассмотрение вводится случайная составляющая , с помощью которой зависимость между объясняющей и объясняемой переменной записывается в виде соотношения , (3.2) называемого регрессионной моделью (уравнением). ЭКСТРАПОЛЯЦИЯ ВРЕМЕННЫХ РЯДОВ Сущность экстраполяции Методы экстраполяции тенденций в развитии экономических процессов являются, пожалуй, наиболее часто применяемыми среди всей совокупности методов прогнозирования. В общем случае под экстраполяцией принято понимать распространение (возможно, с преобразованиями, осуществляемыми посредством формальных методов) количественных характеристик каких-либо объектов или процессов, наблюдаемых в определенных временных, пространственных либо других границах за эти границы. Формально это означает, что значения некоторой функции определяются за границей области ее определения. В экономических прогнозных расчетах использование экстраполяции имеет в своей основе предположение о том, что рассматриваемый процесс изменения прогнозируемой переменной представляет собой сочетание двух составляющих: регулярной и случайной: (2.1) Считается, что регулярная составляющая представляет собой гладкую функцию от аргумента, в качестве которого обычно рассматривается время. Функция определяется с точностью до неизвестного вектора параметров , который остается неизменным на периоде упреждения прогноза. Эту составляющую называют трендом, или уровнем детерминированной основы процесса, или основной тенденцией. Под всеми этими терминами понимается интуитивное представление о какой-то «очищенной» от случайных колебаний закономерности анализируемого процесса. Интуитивное – потому, что для большинства экономических процессов нельзя однозначно отделить тренд от случайной составляющей. Все зависит от того, какую цель преследует подобное разделение, и с какой точностью его хотят осуществить. Случайная составляющая обычно считается ненаблюдаемым некоррелированным случайным процессом с нулевым математическим ожиданием и ограниченной дисперсией. Его оценки получаются только после построения модели и в дальнейшем используются для определения интервальных характеристик точности прогноза. Успех применения эктраполяционных методов прогнозирования в значительной степени зависит от выбора наилучшего в некотором смысле описания (вида) тренда.
|
||||
Последнее изменение этой страницы: 2016-07-14; просмотров: 1188; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.40.56 (0.008 с.) |