![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
В7 Параметрическое программирование. Постановка и геометрическая интерпретация задачи. Аналитическое решение задачи.Содержание книги
Поиск на нашем сайте
Алгоритм решения задачи c предыдущего вопроса состоит из двух этапов. Этап I. Параметру t дают фиксированное значение, например t=a. Этим задача приводится к задаче линейного программирования. Решая эту задачу симплекс-методом, находят вершину, в которой f t достигает максимума. Этап II. Определяют интервал изменений параметра t, для которого максимум ft достигается в одной и той же вершине многогранника W. Найденный интервал исключают из отрезка [a;b]. Для оставшейся части отрезка снова решают задачу симплекс-методом, т. е. переходят к этапу I. Решение продолжается до тех пор, пока весь отрезок [a;b] не будет разбит на частичные интервалы. Подробно алгоритм решения рассмотрим на примере. Пример 1. Найти интервалы изменения параметра t на отрезке [a;b] для которых Решим задачу в два этапа. Этап 1. 1. Полагаем t=a. Тогда функция будет иметь вид: Все данные задачи заносим в жорданову таблицу. В строке fa этой таблицы в каждый столбец записываем число, равное сумме чисел cj и dja. Кроме того, добавим в таблицу две строки для записи функций ft с произвольным параметром t. При этом в предпоследней строке записываем коэффициенты c j, а в последней – d j. Чтобы получить f t, нужно умножить коэффициенты последней строки на t и сложить их с коэффициентами предпоследней.
2. Находим оптимальный план задачи обычным симплекс-методом, подвергая преобразованию и элементы последних двух строк. Предположим, что план, представленный в таблице 1, является оптимальным. Тогда все коэффициенты fa -строки неотрицательны:
Поскольку оптимальный план найден, переходим к выполнению действий этапа II.
Этап 2.
1. Находим значения параметра t, при которых план в таблице 2 будет оставаться оптимальным (максимум f t достигается в той же вершине). Для этого необходимо, чтобы все коэффициенты функции f t были неотрицательны:
Из этой системы видно, что во всех случаях, кроме q j =0 (при q j =0 неравенство p j + qj t ³ 0 выполняется при любых значениях t; следовательно, на столбец, в котором находится q j =0, можно не обращать внимания), границей изменения параметра t служит отношение
2. Пусть все q j > 0. Среди отношений Таким образом, В интервале [ a1;a2) функция достигает максимума в той же вершине, что и при t=a, следовательно, t Î[ a1;a2) 3. Пусть все qj < 0. Среди отношений Как и прежде, t Î[ a1;a2).
4. Пусть среди элементов qj имеются как положительные, так и отрицательные. Разделим систему неравенств на две подсистемы соответственно знакам коэффициентов qj. Тогда из подсистемы неравенств с qj > 0 получим В этом случае выделенный интервал, в котором функция достигает максимума в той же вершине, что и при t=a, является отрезком, tÎ[ a1;a2 ].
5. Сравниваем полученный интервал [ a1;a2 ] с заданным [ a;b ].Независимо от значения a1 левой границей первого интервала будет a, так как a 1 больше a быть не может. Если a2 ³ b, то весь интервал [ a;b ] попадает внутрь интервала [ a1;a2 ] и задача решена. Для любого значения параметра t Î[ a;b ] максимум функции ft достигается в одной и той же вершине
6. Если a2 < b, то в интервале [ a;a1 ] максимум функции ft будет в найденной вершине (рисунок 8.2). Исключаем этот интервал из рассмотрения и решаем задачу для оставшегося интервала [ a2; b ]. Для этого придаем t значение a 2 и заменяем строку fa строкой f a2. В результате замены получаем новую таблицу За разрешающий столбец в новой таблице примем тот, по которому определено значение t=a2 (в этом столбце на пересечении с fa2 -строкой находится элемент, равный нулю). Если нули находятся в нескольких столбцах, то в качестве разрешающего можно брать любой из них. Разрешающий элемент находим по наименьшему симплексному отношению и делаем один шаг модифицированных жордановых исключений. Получаем следующее по порядку оптимальное решение, так как все коэффициенты в строке fa2 при преобразовании не изменятся.
Для найденного решения снова определяем интервал изменения параметра t, для чего переходим к п. 1. Если в разрешающем столбце не окажется положительных коэффициентов, то функция ft при t>a2 не ограничена; задача на оставшемся интервале [ a2;b ] решения не имеет. Замечание. При отыскании оптимального решения для t=a (при выполнении п. 2 этапа I алгоритма) может оказаться, что функция fa сверху не ограничена. В этом случае в разрешающем столбце j0 коэффициент fa - строки отрицателен При значениях t>a на пересечении строки ft и столбца j0 будет элемент Если значение элемента Если элемент При значении t=t0 коэф-т
|
||||||
Последнее изменение этой страницы: 2016-07-14; просмотров: 291; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.26.99 (0.007 с.) |