Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Высокомолекулярные вещества, методы получения, классификация. Структура и форма макромолекул и типы связей между ними. Гибкость макромолекул.

Поиск

Высокомолекулярные вещества, методы получения, классификация. Структура и форма макромолекул и типы связей между ними. Гибкость макромолекул.

Химические соединения с высокой молекулярной массой (от нескольких тысяч до многих миллионов). В состав молекул В. с. (макромолекул) входят тысячи атомов, соединенных химическими связями.
Классификация. По происхождению В. с. делят на природные, или биополимеры (напр., белки, нуклеиновые кислоты, полисахариды), и синтетические (напр., полиэтилен, феноло-алъдегидные смолы). В зависимости от расположения в макромолекуле атомов и атомных групп различают: 1) линейные В.С., макромолекулы к-рых представляют собой открытую, линейную, цепь (напр., каучук натуральный) или вытянутую в линию последовательность циклов (напр., целлюлоза); 2)разветвленные В.С., макромолекулы к-рых имеют форму линейной цепи с ответвлениями (напр., амилопектин); З) сетчатые В.с. - трехмерные сетки, образованные отрезками ВС, цепного строения (напр., отвержденные фенол-альдегидные смолы.
Полимеры, макромолекулы к-рых состоят из одинаковых стереоиэомеров или из различных стереоизомеров, чередующихся в цепи в определенной периодичности, наз. стереорегулярными.Полимеры, в к-рых каждый или нек-рые стереоизомеры звена образуют достаточно длинные непрерывные последовательности, сменяющие друг друга в пределах одной макромолекулы, наз. стереоблоксополимеры. По хим. составу макромолекулы различают гомополимеры (полимер образован из одного мономера, напр. полиэтилен) и сополимеры (полимер образован, по меньшей мере, из двух разл. мономеров). В.С., состоящие из одинаковых мономерных звеньев, но различающиеся по мол, массе, наз. полимергомологами. Сополимеры в зависимости от характера распределения разл. звеньев в макромолекуле делят на регулярные и нерегулярные. В регулярных макромолекулах наблюдается определенная периодичность распределения. Для нерегулярных сополимеров характерно случайное, или статистическое распределение звеньев; оно наблюдается у мн. синтетич. сополимеров. В белках нерегулярные последовательности звеньев задаются генетич. кодом. Сополимеры, в к-рых достаточно длинные непрерывные последовательности, образованные каждым из звеньев, сменяют друг друга в пределах макромолекулы, наз. блоксополимерами. Последние наз. регулярными, если длины блоков и их чередование подчиняются определенной периодичности. При уменьшении длины блоков различие между блоксополимерами и статистич. сополимерами постепенно утрачивается. К внугр. (неконцевым) звеньям макромолекулярной цепи одного хим. состава или строения м. б. присоединены одна или неск. цепей другого состава или строения; такие сополимеры наз. привитыми. В зависимости от состава основной (главной) цепи макромолекулы все ВС, делят на два больших класса: гомоцепные, основные цепи к-рых построены из одинаковых атомов, и гетероцепные, в основной цепи к-рых содержатся атомы разных элементов, чаще всего С, N, Si, P. Среди гомоцепных В. с. наиб. распространены карбоцепные (главные цепи состоят только из атомов углерода), напр. полиэтилен, полиметилметакрилат, и др. Примеры гетероцепных В. С.- полиэфиры, полиамиды, кремнийорганические полимеры, белки, целлюлоза. В. С., в макромолекулы к-рых наряду с углеводородными группами входят атомы неорганогенных элементов, наз., элементоорганическими. В полимерах, содержащих атомы металла (напр., Zn, Mg, Cu), обычные ковалентные связи могут сочетаться с координационными. В зависимости от формы макромолекулы В. с. делят на глобулярные и фибриллярные. У фибриллярных В. С. молекулы представляют собой линейные или слаборазветвленные цепи. Фибриллярные В. с. легко образуют надмолекулярные структуры в виде асимметричных пачек молекул — фибрилл. Глобулярными паз. В. С., макромолекулы к-рых имеют форму компактных шарообразных клубков — глобул, возможно также образование глобул из фибриллярных.

Макромолекулы полимеров могут быть линейными, разветвленными и сетчатыми. Линейные полимеры образуются при полимеризации мономеров или линейной поликонденсации.Разветвленные полимеры могут образоваться как при полимеризации, так и при поликонденсации. Разветвление полимеров может быть вызвано при росте боковых цепей, передачей цепи на макромолекулу, физическими воздействиями (g-облучение) на смесь полимера и мономеров.Сетчатые полимеры образуются в результате сшивки цепей при вулканизации.Форма макромолекул влияет на структуру и свойства полимеров.В линейных и разветвленных макромолекулах, атомы или группы атомов могут вращаться вокруг ординарных связей, постоянно изменяя свою пространственную форму. Это свойство обеспечивает гибкость макромолекул, и они могут изгибаться, скручиваться, распрямляться. Поэтому для линейных и разветвленных полимеров характерно высокоэластичное состояние, они обладают термопластическими свойствами:размягчаются при нагревании и затвердевают при охлаждении без химических превращений.При разветвлении эластические термопластические свойства становятся менее выраженными, а при образовании сетчатой структуры термопластичность теряется. Уменьшение длины цепей ведет к уменьшению эластичности полимеров, например, при переходе от каучука к эбониту.

Линейные полимеры могут иметь регулярную и нерегулярную структуру.В полимерах регулярной структуры отдельные звенья цепи повторяются в определенной последовательности и располагаются в определенном порядке в пространстве, их называют стереорегулярными. Стереорегулярность изменяет тепловые и механические свойства полимеров.

10.2.2. Кристаллическое состояние полимеров Обычно большинство полимеров находится в аморфном состоянии. Но некоторые могут иметь кристаллическую структуру. Кристаллизоваться могут лишь стереорегулярные полимеры.Благодаря регулярной структуре и гибкости макромолекулы могут сближаться друг с другом и между ними возникают водородные связи или межмолекулярное взаимодействие с упорядоченной структурой. Возникают ассоциаты упорядоченно расположенных молекул-пачки(1-стадия). Из пачек образуются фибриллы – агрегаты пачек продолговатой формы и сферолиты – игольчатые образования, радиально расходящиеся из одного центра(2-стадия). Из фибрилл и сферолитов образуются кристаллы(Большое число кристаллов с аморфными областями между ними представляют кристаллический полимер. Степень кристалличности, например, у полиэтилена может достигать 80%.Свойства кристаллических и аморфных полимеров различаются. Аморфные полимеры характеризуются областью температур размягчения, т.е. постепенно переходят из твердого состояния в жидкое, а кристаллические полимеры – температурой плавления.

10.2.3. Физические состояния аморфных полимеров При низкой температуре полимер находится в стеклообразном состоянии и ведет себя как твердое тело.При повышении температуры полимер переходит в высокоэластичное состояние. В этом состоянии полимер способен к различным обратимым деформациям, что обусловлено подвижностью звеньев и гибкостью молекул. И при дальнейшем повышении температуры вещество переходит в вязкотекучее состояние, Дальнейшее повышение ведет к разрушению (деструкции) полимера. Вязкотекучее состояние характеризуется подвижностью и звеньев и всей макромолекулы. При течении молекулы полимера распрямляются и сближаются, в результате чего усиливается межмолекулярное взаимодействие, и полимер становится жестким. Это явление, характерное только для аморфных полимеров получило название механического стеклования. Его используют при формировании волокон и пленок.

Свойства полимеров

Химические свойства полимеров зависят от их состава, молекулярной массы и структуры, вследствие наличия двойных связей и функциональных групп. Отдельные макромолекулы могут ²сшиваться² поперечными связями. Это процесс вулканизации и перевод линейных макромолекул термореактивных полимеров в сетчатые структуры.При вулканизации происходит взаимодействие каучука с серой (0.5 - 5% серы) с образованием резины или эбонита (20% и более серы), например,К реакциям взаимодействия функциональных групп с низкомолекулярными веществами относятся галогенирование, гидролиз и д.р.Полимеры могут подвергаться деструкции, т.е. разрушению под действием кислорода, света, теплоты, радиации. В результате деструкции уменьшается молекулярная масса макромолекул, изменяются физические и химические свойства полимеров и он становится непригодным для дальнейшего применения, Этот процесс называется старением полимеров. Чтобы замедлить этот процесс вводят стабилизаторы, чаще всего антиоксиданты.Механические свойства полимеров определяются элементным составом, молекулярной массой, структурой и физическим состоянием макромолекул.С ростом молекулярной массы механическая прочность возрастает, а также при переходе от линейных к разветвленным и далее к сетчатым структурам.Стереорегулярные структуры имеют большую прочность, чем полимеры с разупорядоченной структурой. Самая высокая прочность у полимеров наблюдается в кристаллическом состоянии. Механическую прочность можно повысить добавлением наполнителей - сажи, мела, армированием стекловолокном.Электрические свойства полимеров. Вещества делятся на диэлектрики, полупроводники и проводники.

Диэлектрики имеют очень низкую проводимость (< 10ˉ8 Омˉ1×смˉ1), которая увеличивается с повышением температуры.Внешнее электрическое поле поляризует диэлектрики, т.е. определенно ориентирует молекулы. Внутри возникает собственное электрическое поле, которое ослабляет воздействие внешнего поля. Характеризуется это диэлектрической проницаемостью. При высоком напряжении внешнего электрического поля диэлектрик теряет свои электроизоляционные свойства. Это напряжение называется напряжением пробоя, а отношение напряжение пробоя к толщине диэлектрика - электрической прочностью.Большинство полимеров относится к диэлектрикам и определяются эти свойства наличием полярных групп в макромолекулах (Clˉ, OHˉ,COOHˉ, и т.п.) - они ухудшают их диэлектрические свойства. Полимеры, не имеющие этих групп: фторопласт, полиэтилен - хорошие диэлектрики. Увеличение молекулярной массы улучшает диэлектрические свойства. При переходе от стеклообразного к высокоэластичному и вязкотекучему состояниям удельная электрическая проводимость возрастает. Для улучшения диэлектрических свойств необходимо удалять из полимеров ионы и примеси. OHˉ обуславливает гидрофильность полимеров. Они поглощают воду. В результате чего увеличивается электропроводность. OHˉ необходимо связывать между собой или с другими группами.

Аналитические реакции

Гексацианоферрат(III) калия K3[Fe(CN)6] с катионом Fe2+ образует синий осадок «турнбулевой сини»:

3FeSO4 + 2K3[Fe(CN)6] → Fe3[Fe(CN)6]2↓+ 3K2SO4,

3Fe2+ + 2Fe(CN)63– → Fe3[Fe(CN)6]2↓.

Осадок не растворяется в кислотах, но разлагается щелочами с образованием Fe(OH)2. При избытке реактива осадок приобретает зеленый оттенок. Реакции мешают ионы Fe3+, которые при большой концентрации дают с реактивом бурое окрашивание раствора, и ионы Мn2+ и Bi3+, дающие с реактивом слабоокрашенные осадки, растворимые в кислотах. Выполнение реакций. В пробирку поместить 1–2 капли раствора FeSO4 и прибавить 1 каплю реактива. Полученный осадок разделить на две части, к первой прибавить 1-2 капли 2 М раствора НС1, ко второй– 1-2 капли 2 М раствора щелочи. Условия проведения реакции – с разбавленными растворами в кислой среде, рН = 3.

1.5.2.> Окисление Fe2+ до Fe3+. Ион Fe2+ представляет собой довольно сильный восстановитель и способен окисляться при действии ряда окислителей, например, H2O2, KMnO4, K2Cr2O7 в кислой среде и др.

2Fe2+ + 4OH + H2O2 → 2Fe(OH)3↓.

При проведении систематического анализа Fe2+ следует открыть в предварительных испытаниях, т.к. в процессе разделения групп Fe2+ может окислиться до Fe3+.

Частные аналитические реакции ионов Fe3+

1.5.3. Гексацианоферрат(II) калия K4[Fe(CN)6] с катионами Fe3+ образует темно-синий осадок «берлинской лазури»:

4Fe3+ + 3Fe(CN)64– → Fe4[Fe(CN)6]3↓.

Осадок практически не растворяется в кислотах, но разлагается щелочами с образованием Fe(OH)3. В избытке реактива осадок заметно растворяется. Выполнение реакции. К 1–2 каплям раствора FeCl3 прибавить 1 каплю реактива. Полученный осадок разделить на две части. К одной части прибавить 2–3 капли 2 М раствора НС1, к другой –1-2 капли 2 М раствора NaOH, перемешать.

1.5.4. Тиоцианат (роданид) калия KNCS с ионами Fe3+ образует комплекс кроваво-красного цвета. В зависимости от концентрации тиоцианата могут образовываться комплексы различного состава:

Fe3+ + NCS ↔ Fe(NCS)2+,

Fe3+ + 2NCS ↔ Fe(NCS)2+,

и т.д. до Fe3+ + 6NCS ↔ Fe(NCS)63–,

Реакция обратима, поэтому реактив берется в избытке. Определению мешают ионы, образующие с Fe3+ устойчивые комплексы, например, фторид-ионы, соли фосфорной, щавелевой и лимонной кислот.

 

 

89.Элементы I B группы. Типичные свойства важнейших соединений, биологическая роль. Бактерицидное действие ионов Ag+ и Сu2+. Аналитические реакции на ионы серебра и меди.

I B

n = 4 Cu ns1(n-1)d10, внешний уровень - 1 ē,

предвнешний - 18 ē

n = 5 Ag Неспаренных ē - один (провал, проскок), но

n = 6 Au 18 - электронный слой, устойчивый у подгруппы

цинка, здесь еще не вполне стабилизировался и

способен к потере ē, поэтому СО возможны

+1, +2, +3.

Только d-элементы IB группы образуют соединения, в которых СО превышает N группы, причем она более устойчива для Cu2+, Ag+, Au+3

Хаpактеpное свойство двухзаpядных ионов меди - их способность соединяться с молекулами аммиака с обpазованием комплексных ионов.Медь пpинадлежит к числу микpоэлементов. Такое название получили Fe, Cu, Mn, Mo, B, Zn, Co в связи с тем, что малые количества их необходимы для ноpмальной жизнедеятельности pастений. Микpоэлементы повышают активность феpментов, способствуют синтезу сахаpа, кpахмала, белков, нуклеиновых кислот, витаминов и феpментов. Сеpебpо — малоактивный металл. В атмосфеpе воздуха оно не окисляется ни пpи комнатных темпеpатуpах, ни пpи нагpевании. Часто наблюдаемое почеpнение сеpебpяных пpедметов — pезультат обpазования на их повеpхности чёpного сульфида сеpебpа - AgS2. Это пpоисходит под влиянием содеpжащегося в воздухе сеpоводоpода, а также пpи сопpикосновении сеpебpяных пpедметов с пищевыми пpодуктами, содеpжащими соединения сеpы.4Ag + 2H2S + O2 —> 2Ag2S +2H2OВ pяду напpяжения сеpебpо pасположено значительно дальше водоpода. Поэтому соляная и pазбавленная сеpная кислоты на него не действуют. Раствоpяют серебpо обычно в азотной кислоте, котоpая взаимодействует с ним согласно уpавнению:Ag + 2HNO3 —> AgNO3 + NO2­+ H2OСеpебpо обpазует один pяд солей, pаствоpы котоpых содеpжат бесцветные катионы Ag+.Пpи действии щелочей на pаствоpы солей сеpебpа можно ожидать получения AgOH, но вместо него выпадает буpый осадок оксида сеpебpа(I):2AgNO3 + 2NaOH —> Ag2O + 2NaNO3 + H2OКpоме оксида сеpебpа(I) известны оксиды AgO и Ag2O3.Hитpат сеpебpа (ляпис) - AgNO3 - обpазует бесцветные пpозpачные кpисталлы, хоpошо pаствоpимые в воде. Пpименяется в пpоизводстве фотоматеpиалов, пpи изготовлении зеpкал, в гальванотехнике, в медицине.Подобно меди, сеpебpо обладает склонностью к обpазованию комплексных соединений.Многие неpаствоpимые в воде соединения сеpебpа (напpимеp: оксид сеpебpа(I) — Ag2O и хлоpид сеpебpа— AgCl), легко pаствоpяются в водном pаствоpе аммиака.Комплексные цианистые соединения сеpебpа пpименяются для гальванического сеpебpения, так как пpи электpолизе pаствоpов этих солей на повеpхности изделий осаждается плотный слой мелкокpисталлического сеpебpа.Все соединения сеpебpа легко восстанавливаются с выделением металлического сеpебpа. Если к аммиачному pаствоpу оксида сеpебpа(I), находящемуся в стеклянной посуде, пpибавить в качестве восстановителя немного глюкозы или фоpмалина, то металлическое сеpебpо выделяется в виде плотного блестящего зеpкального слоя на повеpхности стекла. Ионы сеpебpа подавляют pазвитие бактеpий и уже в очень низкой концентpации, сеpилизуют питьевую воду. В медицине для дезинфекции слизистых оболочек пpименяются стабилизиpованные специальными добавками коллоидные pаствоpы сеpебpа (пpотаpгол, коллаpгол и дp.Серебро (наряду с другими тяжелыми металлами, такими как медь, олово, ртуть) способно в малых концентрациях оказывать бактерицидное действие (так называемый, олигодинамический эффект). Выраженный бактерицидный эффект (способность гарантированно убивать определенные бактерии) наблюдается при концентрациях ионов серебра свыше 0,15 мг/л. В количестве 0,05 - 0,1 мг/л ионы серебра обладают только бактериостатическим действием (способностью сдерживать рост и размножение бактерий). Хотя скорость обеззараживания серебром не так высока, как озоном или УФ лучами, ионы серебра могут долгое время оставаться в воде, обеспечивая ее длительную дезинфекцию. Механизм действия серебра еще до конца не изучен. Как полагают ученые, обеззараживающий эффект наблюдается, когда положительно заряженные ионы серебра, а также меди образуют электростатические связи с отрицательно заряженной поверхностью клеток микроорганизмов. Эти электростатические связи создают напряжение, которое может нарушить проницаемость клеток и снизить проникновение в них жизненно-необходимого количества питательных веществ. Проникая же внутрь клеток, ионы серебра, а также меди взаимодействуют с аминокислотами, которые входят в состав протеинов и используются в процессе фотосинтеза. В результате чего, процесс превращения солнечного излучения в пищу и энергию микроорганизмов нарушается, что и приводит к их гибели.В результате многочисленных исследований подтверждено эффективное бактерицидное воздействие ионов серебра на большинство патогенных микроорганизмов, а также и на вирусы. Однако спорообразующие разновидности микроорганизмов практически нечувствительны к серебру.Обогащение воды ионами серебра может осуществляться несколькими способами: непосредственным контактом воды с поверхностью серебра, обработкой воды раствором солей серебра и электролитическим методом.

Качественная реакция на ионы меди
Гексацианоферрат (2) калия K4[Fe(CN)6] образует с раствором соли меди красно-бурый осадок Cu2[Fe(CN)6], нерастворимый в разбавленных кислотах, но растворимый в растворе аммиака.
Cu2+ + [Fe(CN)6]4+ ® Cu2[Fe(CN)6]¯К 3 каплям раствора CuSO4 прибавить 2 капли раствора соли K4[Fe(CN)6]. Hаблюдать выпадение красного осадка. Осадок отцентрифугировать и прибавить к нему 3–5 капель раствора аммиака.

Реакции обнаружения ионов меди Сu2+

Действие группового реагента H2S. Сероводород образует в подкисленных растворах солей меди черный осадок сульфида меди (II)CuS:CuSO4 + H2S = CuS + H2SO4,Cu2+ + H2S = CuS + 2H+.

Действие гидроксида аммония NH4OH. Гидроксид аммония NH4OH, взятый в избытке, образует с солями меди комплексный катион тетраамминмеди (II) интенсивно-синего цвета:

CuSO4 + 4NH4OH = [Cu(NH3)4]SO4 + 4Н2O,

Сu2+ + 4NH4OH = [Cu(NH3)4]+ + 4Н2О.

Реакции обнаружения ионов серебра Ag+

Действие группового реагента НС1. Соляная кислота образует с растворами солей Ag+ практически нерастворимый в воде белый осадок хлорида серебра AgCl:

Ag+ + Cl- = AgCl.

Обнаружение катиона серебра. Соляная кислота и растворы ее солей (т. е. хлорид-ионы Сl-) образуют с растворами солей Ag+ практически нерастворимый в воде белый осадок хлорида серебра AgCl, который хорошо растворяется в избытке раствора NH4OH; при этом образуется растворимая в воде комплексная соль серебра хлорид диамминсеребра. При последующем действии азотной кислоты комплексный ион разрушается и хлорид серебра снова выпадает в осадок (эти свойства солей серебра используются для его обнаружения):

AgNO3 + НСl = AgCl + HNO3,

AgCl + 2NH4OH = [Ag(NH3)2]Cl + 2Н2О,

[Ag(NH3)2]Cl + 2HNO3 = AgCl + 2NH4NO3.

90.Элементы II В группы. Типичные свойства важнейших соединений, биологическая роль. Комплексная природа, медь- и цинксодержащих ферментов. Аналитические реакции на ионы Zn2+.

Ферментами называют природные белковые катализаторы. Некоторые ферменты имеют чисто белковый состав и не нуждаются для проявления своей активности в каких-либо иных веществах. Однако существует обширная группе ферментов, активность которых проявляется только в присутствии определенных соединений небелковой природы. Эти соединения называются кофакторами. Кофакторами могут быть, например, ионы металлов или органические соединения сложного строения - их обычно называют коферментами. Установлено, что для нормальной работы фермента иногда требуется и кофермент, и ион металла, образующие вместе с молекулой субстрата тройной комплекс. Так металлы входят в состав биологических машин как незаменимая часть. Ионы магния нужны для работы по переносу остатков фосфорной кислоты, для этих же целей нужны и ионы калия; гидролиз белков требует ионов цинка и т. д. Ниже мы разберем эти вопросы детально.Ферменты, как правило, ускоряют однотипные реакции, и лишь немногие из них действуют только на одну определенную и единственную реакцию. К таким ферментам, обладающим абсолютной специфичностью, относится, в частности, уреаза, разлагающая мочевину. Большинство ферментов не столь строги в выборе субстрата. Одна и та же гидролаза, например, способна катализировать гидролитическое разложение нескольких различных сложных эфиров.По мере того как в биологических исследованиях их химическая сторона углублялась и химики все чаще становились помощниками и сотрудниками биологов, число вновь открываемых ферментов неуклонно возрастало; вскоре их пришлось считать уже не десятками, а сотнями. Такое расширение круга биологических катализаторов вызвало некоторые трудности в классификации и номенклатуре ферментов.Раньше ферменты называли по тому субстрату, на который они действовали, с прибавлением окончания "аза". Так, если фермент действует на сахар мальтозу, то его называли "мальтаза", если на лактозу - "лактаза" и т. д. В настоящее время принята номенклатура, в которой название отражает также и химическую функцию фермента. Частица "аза" сохранена для простых ферментов. Если же в реакции участвует комплекс ферментов, применяют термин "система".

Ферменты делят на шесть классов:

Оксидоредуктазы. Это ферменты, катализирующие окислительно-восстановительные реакции. Примером оксидоредуктаз могут служить пируватдегидрогеназа, отнимающая водород от пировиноградной кислоты, каталаза, разлагающая пероксид водорода, и др.

Ионы d-элементов IIB группы

Реакции обнаружения ионов цинка Zn

Действие группового реагента (NH4)2S. Сульфид аммония образует с солями цинка белый осадок сульфида цинка ZnS:

ZnCl2 + (NH4)2S = ZnS + 2NH4Cl,

Zn2+ + S2- = ZnS.

Действие гидроксидов щелочных металлов. Растворы гидроксидов щелочных металлов (NaOH, КОН) осаждают из водных растворов солей Zn2+ осадок гидроксида цинка Zn(OH)2 белого цвета, проявляющий амфотерные свойства. В избытке щелочи осадок растворяется с образованием бесцветного раствора комплексной соли тетрагидроксоцинката натрия Na2[Zn(OH)4]:

ZnCl2 + 2NaOH = Zn(OH)2 + 2NaCl,

Zn(OH)2 + 2NaOH = Na2[Zn(OH)4].

91.Общая характеристика р-элементов. Элементы III A группы. Типичные свойства важнейших соединений, их биологическая роль. Аналитические реакции на ионы Al3+.

Главную подгруппу III группы составляют элементы бор, алюминий, галлий, индий и таллий, элементы относятся к р-элементам. На внешнем энергетическом уровне они имеют по три (s2p1) электрона, чем объясняется сходство свойств.Степень окисления +3. Внутри группы с увеличением заряда ядра металлические свойства увеличиваются. Бор — элемент-неметалл, а у алюминия уже металлические свойства. Все элементы образуют оксиды и гидроксиды.В реакциях с водой они образуют растворимые в воде основания (щелочи).

На внешнем электронном уровне элементов главной подгруппы имеется по 3 электрона (s2р1). Они легко отдают эти электроны или образуют 3 неспаренных электрона за счет перехода 1 электрона на р-уровень. Для бора и алюминия характерны соединения только со степенью окисления +3 У элементов подгруппы галлия (галлий, индий, таллий) на внешнем электронном уровне также находится по 3 электрона, образуя конфигурацию s2р1, но они расположены после 18-электронного слоя. Поэтому в отличие от алюминия галлий обладает явно неметаллическими свойствами. Эти свойства в ряду Ga, In, Тl ослабевают, а металлические свойства усиливаются. У элементов подгруппы скандия на внешнем электронном уровне также находится по 3 электрона. Однако эти элементы относятся к переходным d-элементам, электронная конфигурация их валентного слоя d1s2. Эти электроны все 3 элемента довольно легко отдают.Элементы подгруппы лантаноидов имеют отличительную конфигурацию внешнего электронного уровня: у них застраивается 4f -уровень и исчезает d-уровень. Начиная с церия, все элементы, кроме гадолиния и лютеция, имеют электронную конфигурацию внешнего электронного уровня 4fn6s2 (гадолиний и лютеций имеют 5d1-электроны). Число n изменяется от 2 до 14. Поэтому в образовании валентных связей принимают участие s- и f-электроны. Чаще всего степень окисления лантаноидов +3, реже +4.Электронное строение валентного слоя актиноидов во многом напоминает электронное строение валентного слоя лантаноидов. Все лантаноиды и актиноиды - типичные металлы.Все элементы III группы обладают очень сильным сродством к кислороду и образование их оксидов сопровождается выделением большого количества теплоты. Бор относится к примесным микроэлементам, его мас–совая доля в организме человека составляет 10-5 %. Бор концентрируется главным образом в легких (0,34 мг), щитовидной железе (0,30 мг), селезенке (0,26 мг), пече–ни, мозге (0,22 мг), почках, сердечной мышце (0,21 мг). Биологическое действие бора еще недостаточно изуче–но. Известно, что бор входит в состав зубов и костей, очевидно, в виде труднорастворимых солей борной кис–лоты с катионами металлов.Избыток бора вреден для организма человека. Имеют–ся данные, что избыток бора угнетает амилазы, проте-иназы, уменьшает активность адреналина.По содержанию в организме человека (10-5 %) алю–миний относится к примесным микроэлементам. Алю–миний концентрируется главным образом в сыворотке крови, легких, печени, костях, почках, ногтях, волосах, входит в структуру нервных оболочек мозга человека.Суточное потребление алюминия человеком состав–ляет 47 мг. Алюминий влияет на развитие эпителиаль–ной и соединительной тканей, на регенерацию костных тканей, влияет на обмен фосфора.Алюминий оказывает воздействие на ферментатив–ные процессы.Избыток алюминия в организме тормозит синтез ге–моглобина, так как благодаря довольно высокой комп-лексообразующей способности алюминий блокирует активные центры ферментов, участвующих в кроветво–рении. Имеются данные, что алюминий может катали–зировать реакцию трансаминирования.Галлий – примесный микроэлемент (содержание в ор–ганизме человека 10−6—10−5%). Биологическая роль гал–лия в живых организмах почти не выяснена.Таллий относится к весьма токсичным элемен–там. Ион Т1 склонен подобно Ag+ образовывать прочные соединения с серосодержащими лигандами.Вследствие этого он очень токсичен, так как подав–ляет активность ферментов, содержащих тиогруппы – SH. Даже весьма незначительные количества соедине–ний Т1 + при попадании в организм вызывают выпадение волос.Вследствие близости радиусов К+ и Т1+ они обла–дают сходными свойствами и способны замещать друг друга в ферментах. Ионы Т1 и К являются синергистами. Этим объясняется тот факт, что ферменты пиру-ваткиназа и диолдегидратаза активируются не только ионами К, но и ионами Т1 (ион Т1 замещает ион К в ка–талитическом центре ферментов). Синергизм тал–лия и калия проявляется и в том, что подобно ионам К ионы Т1 накапливаются в эритроцитах.В качестве противоядия при отравлении ионами Т1 используют серосодержащий лиганд – аминокислоту цистин.В заключение необходимо отметить, что биологи–ческая роль р-элементов IIIA-группы изучена недоста–точно. В настоящее время известно, что бор и галлий взаимодействуют в растениях с ингибиторами их раз–вития полифенолами, уменьшая токсичность послед–них. Установлена также несомненная роль алюминия в построении эпителиальной и соединительной тканей и, кроме того, его участие в ферментативных процес–сах как в качестве активатора, так и в качестве ингиби–тора. Свойством ингибировать многие серосодержа–щие ферменты обладает ион Т1.Биологическая активность р-элементов IIIA-группы связана главным образом с их способностью к обра–зованию комплексных соединений с кислородсодер–жащими лигандами и нерастворимых фосфатов.

Качественная реакция на ион алюминия
Характерной реакцией на ион алюминия является реакция образования окрашенного соединения с ализарином. Реакцию проводят обычно капельным методом на фильтровальной бумаге.
На полоску фильтровальной бумаги нанести каплю раствора Al2(SO4)3 и обработать парами аммиака над фарфоровой чашкой. Периферию образовавшегося пятна обработать спиртовым раствором ализарина. Наблюдать образование красного пятна «алюминиевого лака».

 

Аналитические реакции катиона алюминия Al3+

1. Реакция с щелочами: А13+ + 3 ОН- -► А1(ОН)3 (белый) А1(ОН)3 + 3 ОН- -> [А1(ОН)6]3-После растворения гидроксида алюминия и образования гидроксокомплексов алюминия к раствору прибавляют несколько кристаллов соли аммония (NH4C1). Смесь нагревают. Гидроксокомплексы разрушаются выпадает осадок А1(ОН)3: [А1(ОН)6]3- + 3 NH4+ -> А1(ОН)3 + 3 NH3 + 3 Н2ОНаиболее полное осаждение гидроксида алюминия происходит при рН- 5-6. Осадок А1(ОН)3 растворяется в кислотах, но не растворяется в аммиаке.2. Реакция с аммиаком.А13+ + 3 NHrH2O -> А1(ОН)31 (белый аморфный) + 3 NH4+3. Реакция с нитратом кобальта - образование -тенаровой сини- (фармакопейная).-Тенаровая синь- - смешанный оксид алюминия и кобальта синего цвета.2 A12(SO4)3 + 2 Co(NO3)2 —tT-> 2 Со(А1О2)2 + 4 NO2 + 6 SO3 + O2.4. Реакция с алюминоном Катионы А13+ при взаимодействии с алюминоном – аммонийной солью ауринтрикарбоновой кислоты (для кратности NH4L) образуют в уксуснокислой или аммиачной среде комплекс красного цвета (по-видимому, состав A1(ОН)2 L. Точное строение комплекса неизвестно. Выпадает красный хлопьевидный осадок. Мешают катионы Са2+, Cr3+, Fe3+5. Реакция с ализарином (1,2 - диоксиантрахинон).Катионы А13+ с ализарином и его производными в аммиачной среде образует комплексы ярко красного цвета называемые -алюминиевыми лаками-.Комплекс устойчив в уксусной среде. Реакция высокочувствительна: предел обнаружения 0,5 мкг. Мешают катионы: Zn2+, Sn(II), Cr3+, Mn2+, Fe3+ и др.Другие реакции катиона алюминия А13+.Катионы А13+ образуют также осадки при реакциях в растворах: с Na2HPO4 - белый А13РО4, с CH3COONa- белый СН3СООА1(ОН)2, с оксихинолином (кратко Нох) - желто-зеленый [А1(О)3] и др.

1.4.1. Ализарин (1,2-диоксиантрахинон) С14Н6О2(ОН)2 образует с гидроксидом алюминия малорастворимое внутрикомплексное соединение ярко-красного цвета – «алюминиевый лак»:

Выполнению реакции мешает присутствие гидроксидов Zn(OH)2, Сr(ОН)3, Sn(OH)2, которые с ализарином также дают окрашенные «лаки». В ходе анализа смеси катионов III группы ион цинка (II) образует комплекс Zn(NH3)42+, а ион хрома (III) окисляется до СrО42–, поэтому обнаружению А13+ не мешают. Другие мешающие ионы можно предварительно связать действием K4[Fe(CN)6] в труднорастворимый комплекс (капельный метод). Предел обнаружения реакции 0,5 мкг.

Выполнение реакций:

а. В пробирку поместить 2–3 капли раствора соли алюминия и несколько капель 2 М раствора NH4OH до образования осадка А1(ОН)3. Нагреть и добавить 3–4 капли раствора ализарина. Осадок А1(ОН)3 окрашивается в ярко-красный цвет.

б. Эту реакцию можно выполнять капельным методом. На полоску фильтровальной бумаги нанести каплю раствора соли алюминия. Когда раствор впитается в бумагу, подержать полоску над открытой склянкой с концентрированным раствором аммиака. На влажное пятно нанести каплю ализарина и вновь обработать его парами аммиака. Подсушить пятно до перехода фиолетовой окраски ализарина в желтую, на фоне которой наблюдается ало-красное пятно «алюминиевого лака».

1.4.2. Алюминон (аммонийная соль ауринтрикарбоновой ки-слоты) с гидроксидом алюминия образует красные хлопья «алюминиевого лака». Реакция протекает медленно. Ее проведению мешает присутствие катионов Cr3+, Fe3+, Ca2+, которые дают аналогичный «лак», разрушаемый при действии NH4OH или (NH4)2CO3.

Выполнение реакций. К 2 каплям раствора соли алюминия, подкисленного уксусной кислотой, прибавить 1–2 капли 0,01 % раствора алюминона, нагреть на водяной бане и прибавить раствор NH4OH до появления запаха аммиака и 2–3 капли раствора (NH4)2CO3.

 

92.Элементы IV А группы. Типичные свойства важнейших соединений в природе и их биологическая роль. Аналитические реакции на ионы Pb2+.

Главную подгруппу IV группы периодической системы элементов составляют углерод, кремний, германий, олово и свинец. Элемент Номер Атомная масса Электронная конфигурация Углерод б 12,011 l.v!2r2/>; Кремний 14 28,085 1 л-22.уг2/>л3л-33/ї- Германий 32 72,59 Іл^г/^ЗpV4.r4p2 Олово 50 118,69 Ь^-2/>ЧгЗ/)лЗМ<Г5л-5/>г Свинец 82 207.2

Электронная конфигурация./^-элементы. Внешний электронный алой содержит по четыре электрона, электронная формула внешнего слоя пЛір1. Углерод и кремний являются неметаллами, германий, олово и свинец — переходными элементами.

Свойства. Элементы этой подгруппы образуют оксиды с общей формулой RO и RO, н водородные соединения с формулой RH4. От углерода к свинцу свойства оксидов изменяются от кислотных (СО,, SiO,) до амфотерных (SnO,, PbO,). PbO и SnO являются основными оксидами. От углерода к свинцу уменьшается прочность водородных соединений. Изменяется и характер гидратов: так, Н,СО,. H,SiO}—слабые кислоты: Pb(OH),, Sn(OH),, Ge(OH),—амфотерные основания. В подгруппе с ростом порядкового номера уменьшается энергия ионизации и увеличивается атомный радиус, т. е. неметаллические свойства ослабевают, а металлические усиливаются.

Частные аналитические реакции ионов Pb2+

1.2.3. Хромат калия К2СrO4 и дихромат калия К2Сr2О7 с ионами Рb2+ образуют желтый осадок РbСrО4 (KS0 = 1,8 •10–14):

Рb2+ + СrО42– → РbСrО4 ↓, 2Pb2+ + Cr2O72– + H2O → 2PbCrO4 ↓ + 2Н+.

Осадок РbСrО4 мало растворим в HNO3, не растворяется в СН3СООН, но легко растворяется в растворах щелочи:

РbCrO4 + 4ОН → РbО22– + CrO42– + 2Н2О.

Выполнение реакций. В две пробирки поместить по 2–3 капли раствора Pb(NO3)2 и прибавить в одну пробирку 1–2 капли рас-твора К2СrO4, в другую–1–2 капли раствора К2Сr2O7. Исследовать растворимость полученного осадка в 2 М растворах HNO3, CH3COOH, NaOH, прибавляя к осадку по 3–4 капли реактива. Условия проведения реакции – среда должна быть нейтральной или слабокислой.

1.2.4. Иодид калия KI дает с ионами Рb2+ желтый осадок Рb2:

Рb2+ + 2I → РbI2 ↓.

Выполнение реакции. К 1–2 каплям раствора Pb(NO3)2 прибави



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 814; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.0.20 (0.023 с.)