Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структура и свойства коллагена.↑ Стр 1 из 4Следующая ⇒ Содержание книги Поиск на нашем сайте
Структура и свойства коллагена. Коллаге́н — фибриллярный белок, составляющий основу соединительной ткани организма (сухожилие, кость, хрящ, дерма и т. п.) и обеспечивающий её прочность и эластичность. Коллаген обнаружен у многоклеточных животных; отсутствует у растений, бактерий, вирусов, простейших и грибов. Это основной компонент соединительной ткани и самый распространённый белок у млекопитающих, составляющий от 25% до 35% белков во всём теле. Свойства. Продуктом денатурации коллагена является желатин. Температура денатурации макромолекулы коллагена близка к температуре фибриллогенеза. Это свойство молекулы коллагена делает её максимально чувствительной к мутационным заменам. Структура. Молекула коллагена представляет собой правозакрученную спираль из трёх α-цепей. Такое образование известно под названием тропоколлаген. Один виток спирали α-цепи содержит три аминокислотных остатка. Молекулярная масса коллагена около 300 кДа, длина 300 нм, толщина 1,5 нм. Для первичной структуры белка характерно высокое содержание глицина, низкое содержание серосодержащих аминокислот и отсутствие триптофана. Коллаген относится к тем немногим белкам животного происхождения, которые содержат остатки нестандартных аминокислот: около 21 % от общего числа остатков приходится на 3-гидроксипролин, 4-гидроксипролин и 5-гидроксилизин[4]. Каждая из α-цепей состоит из триад аминокислот. В триадах третья аминокислота всегда глицин, вторая — пролин или лизин, первая — любая другая аминокислота, кроме трёх перечисленных[3]. Коллаген существует в нескольких формах. Основная структура всех типов коллагена является схожей. Коллагеновые волокна образуются путём агрегации микрофибрилл, имеют розовый цвет при окраске гематоксилином и эозином и голубой или зелёный при различных треххромных окрасках, при импрегнации серебром окрашиваются в буро-жёлтый цвет. Фибриллярная структура Тропоколлагены (структурные единицы коллагена) спонтанно объединяются, прикрепляясь друг к другу смещенными на определённое расстояние концами, образуя в межклеточном веществе более крупные структуры. В фибриллярных коллагенах молекулы смещены относительно друг друга примерно на 67нм (единица, которая обозначается буквой «D» и меняется в зависимости от состояния гидратации вещества). В целом каждый D-период содержит четыре целых и часть пятой молекулы коллагена. Величина 300 нм, поделенная на 67 нм (300:67) не дают целого числа и длина молекулы коллагена разделена на непостоянные по величине отрезки D. Следовательно, в разрезе каждого повтора D-периода микрофибриллы есть часть, состоящая из пяти молекул, называемая «перекрытие», и часть, состоящая из четырёх молекул — «разрыв». Тропоколлагены к тому же скомпонованы в шестиугольную или псевдошестиугольную (в поперечном разрезе) конструкцию, в каждой области «перекрытия» и «разрыва». Внутри тропоколлагенов существует ковалентная связь между цепями, а также некоторое непостоянное количество данных связей между самими тропоколагеновыми спиралями, образующими хорошо организованные структуры (например, фибриллы). Более толстые пучки фибрилл формируются с помощью белков нескольких других классов, включая другие типы коллагенов, гликопротеины, протеогликаны, использующихся для формирования различных типов тканей из разных комбинаций одних и тех же основных белков. Нерастворимость коллагена была препятствием к изучению мономера коллагена, до того момента как было обнаружено, что возможно извлечь тропоколлаген молодого животного, поскольку он ещё не образовал сильных связей с другими субъединицами фибриллы. Тем не менее, усовершенствование микроскопов и рентгеновских аппаратов облегчили исследования, появлялось все больше подробных изображений структуры молекулы коллагена. Эти поздние открытия очень важны для лучшего понимания того, как структура коллагена влияет на связи между клетками и межклеточным веществом, как ткани меняются во время роста и регенерации, как они меняются во время эмбрионального развития и при патологии. Коллагеновая фибрилла — это полукристаллическая структурная единица коллагена. Коллагеновые волокна — это пучки фибрилл.
2.Цинга. Процессы гидроксилированияпролина и лизина, их роль в возникновении цинги. Цинга́ — болезнь, вызываемая острым недостатком витамина C (аскорбиновая кислота), который приводит к нарушению синтеза коллагена, и соединительная ткань теряет свою прочность. Гидроксилированиепролина и лизина начинается в период трансляции коллагеновой мРНК на рибосомах и продолжается на растущей полипептидной цепи вплоть до её отделения от рибосом. После образования тройной спирали дальнейшее гидроксилированиепролиловых и лизиловых остатков прекращается. Реакции гидроксилирования катализируют ок-сигеназы, связанные с мембранами микросом. Пролиловые и лизиловые остатки в Y-положении пептида (Гли-х-у)n подвергаются действию, соответственно, пролил-4-гидроксилазы и лизил-5-гидроксилазы. Пролил-3-гидроксилаза действует на некоторые остатки пролина в Х-положениях. Необходимыми компонентами этой реакции являются оскетоглутарат, О2 и витамин С (аскорбиновая кислота). Донором атома кислорода, который присоединяется к С-4 пролина, является молекула О2, второй атом О2 включается в сукцинат, который образуется при декарбоксилировании α-кетоглутарата, а из карбоксильной группы а-кетоглутарата образуется СО2 (см. схему А на с. 691). Гидроксилазыпролина и лизина содержат в активном центре атом железа Fe2+. Для сохранения атома железа в ферроформе необходим восстанавливающий агент. Роль этого агента выполняет кофермент гидроксилаз - аскорбиновая кислота, которая легко окисляется в дегидроаскорбиновую кислоту. Обратное превращение происходит в ферментативном процессе за счёт восстановленного глутатиона (см. схему Б на с. 691). Гидроксилированиепролина необходимо для стабилизации тройной спирали коллагена, ОН-группыгидроксипролина (Hyp) участвуют в образовании водородных связей. А гидроксилирование лизина очень важно для последующего образования ковалентных связей между молекулами коллагена при сборке коллагеновых фибрилл. При цинге - заболевании, вызванном недостатком витамина С, нарушается гидроксилирование остатков пролина и лизина. В результате этого образуются менее прочные и стабильные коллагеновые волокна, что приводит к большой хрупкости и ломкости кровеносных сосудов с развитием цинги. Клиническая картина цинги характеризуется возникновением множественных точечных кровоизлияний под кожу и слизистые оболочки, кровоточивостью дёсен, выпадением зубов, анемией.
Биохимия мукополисахаридов. Мукополисахариды, полимерные углевод-белковые комплексы с преимущественным содержанием углеводной части (70-80%). Наиболее изучены кислые Мукополисахариды различных видов соединительной ткани и некоторых жидкостей организма (синовиальная жидкость суставов, стекловидное тело глаза). Основные представители Мукополисахариды: гиалуроновая кислота, гепарин, хондроитинсерные кислоты, кератосульфат (входит в состав хрящей и роговицы глаза). Углеводная часть кислых Мукополисахариды - линейный полисахарид с периодически повторяющимся звеном, состоящим из остатка N-сульфо- или N-ацетиламиносахара (D-глюкозамина или D-галактозамина) и уроновой кислоты. Остатки серной кислоты в составе сульфатированных Мукополисахариды связаны с гидроксильными группами моносахаридных компонентов. Кислые Мукополисахариды сильно различаются по молекулярной массе, прочности связывания компонентов и по функциональным свойствам. Благодаря способности связывать и удерживать воду кислые Мукополисахариды служат природным смазочным материалом суставов и определяют эластичность соединительной ткани; входя в состав хрящей и связок, Мукополисахариды выполняют опорно-двигательные функции. Мукополисахариды обладают бактерицидными свойствами. Состав Мукополисахариды соединительной ткани меняется при старении. Нарушения обмена Мукополисахариды вызывают изменение состава соединительной ткани и жидкостей организма и приводят к ряду заболеваний (коллагенозы, мукополисахаридозы, ревматизм и др.).
Химический состав слюны. Слюна обладает pH от 5,6 до 7,6. На 98,5 % и более состоит из воды, содержит соли различных кислот, микроэлементы и катионы некоторых щелочных металлов, лизоцим и другие ферменты, некоторые витамины. Основными органическими веществами слюны являются белки, синтезируемые в слюнных железах (некоторые ферменты, гликопротеиды, муцины, иммуноглобулины класса А) и вне их. Часть белков слюны имеет сывороточное происхождение (некоторые ферменты, альбумины, β-липопротеиды, иммуноглобулины классов G и М и др.). Химический состав слюны подвержен суточным колебаниям, он также зависит от возраста (у пожилых людей, например, значительно повышается количество кальция, что имеет значение для образования зубного и слюнного камня). Изменения в составе слюны могут быть связаны с приемом лекарственных веществ и интоксикациями. Состав слюны меняется также при ряде патологических состояний и заболеваний. Так, при обезвоживании организма происходит резкое снижение слюноотделения; при сахарном диабете в слюне увеличивается количество глюкозы; при уремии в слюне значительно возрастает содержание остаточного азота. Уменьшение слюноотделения и изменения в составе слюны приводят к нарушениям пищеварения, заболеваниям зубов.
11-12. основные черты механизма секреции слюны. Функции слюнных желез. Определение скорости секреции слюны. Возрастные изменения скорости секреции слюны.. Регуляция слюноотделения преимущественно осуществляется нервными механизмами. Вне пищеварения в основном функционируют мелкие железы. В пищеварительный период секреция слюны значительно возрастает. Регуляция пищеварительной секреции осуществляется условно – и безусловнорефлекторными механизмами. Безусловнорефлекторное слюноотделение возникает при раздражении первоначально тактильных, а затем температурных и вкусовых рецепторов полости рта. Но основную роль играют вкусовые. Нервные импульсы от них по афферентным нервным волокнам язычного, языкоглоточного и верхнегортанного нервов поступают в слюноотделительный центр продолговатого мозга. Он находится в области ядер лицевого и языкоглоточного нервов. От центра импульсы по эфферентным нервам идут к слюнным железам. К околоушной железе эффернтные парасимпатические волокна идут от нижнего слюноотделительного ядра в составе нерва Якобсона, а затем ушно-височных нервов. Парасимпатические нервы, иннервирующие серозные клетки подчелюстных и подъязычных желез начинаются от верхнего слюноотделительного ядра, идут в составе лицевого нерва, а затем барабанной струны. Симпатические нервы иннервирующие железы идут от слюннотделительных ядер II – VI грудных сегментов, прерываются в шейном ганглии, а затем их постганглионарные волокна идут к слизистым клеткам. Поэтому раздражение парасимпатических нервов ведет к выделению большого количества жидкой слюны, а симпатических – небольшого объема слизистой. Условно-рефлекторное слюноотделение начинается раньше безусловно рефлекторного. Оно возникает на запах, вид пищи, звуки предшествующие кормлению. Условно-рефлекторные механизмы секреции обеспечиваются корой больших полушарий, которая через нисходящие пути стимулирует центр слюноотделения. Функции слюнных желез.экзокринная — секреция белковых и слизистых компонентов слюны; эндокринная — секреция гормоноподобных веществ; фильтрационная — фильтрация жидкостных компонентов плазмы крови из капилляров в состав слюны; экскреторная — выделение конечных продуктов метаболизма.
13. Структура и формирование кости. Все кости скелета человека образованы пористой тканью, покрытой твердым материалом, преимущественно кальцием и фосфором, которые и придают костям нужную форму и обеспечивают их прочность.Кости и зубы содержат более 90 % кальция, имеющегося в организме человека. Каждая кость скелета - это живая, активно функционирующая и непрерывно обновляющаяся структура.Для сохранения твердости кости нуждаются в регулярной нагрузке, а в случае её недостатка, кости подвергаются патологическим изменениям («кальций вымывается из кости»). Этот быстротекущий процесс можно наблюдать, например, на загипсованной в течение месяца ноге.Содержание кальция в костях уменьшается и с возрастом, при этом отмечается их хрупкость. У пожилых людей даже при незначительных травмах и ушибах часто случаются переломы костей. Недостаток кальция, и как следствие этого остеопороз, возникают почти у каждого человека в связи со старением организма и поэтому могут рассматриваться как естественное явление.К декальцинации организма в целом и костей скелета в частности могут привести ряд заболеваний кишечника, связанных с пониженной способностью организма получать кальций из пищи; заболевания почек, выделяющих ненормально большое количество кальция. Употребление некоторых медикаментозных препаратов, например, гормональных, также влияет на содержание кальция в костях и может способствовать его излишнему выведению.Кроме структурно-опорной функции (в составе костной ткани)кальций участвует в проведении нервного импульса, в нервно-мышечном сокращении, в работе системы свёртывания крови, тканевом дыхании, активирует ряд ферментов, обладает десенсибилизирующим (антигистаминным) действием.Необходим кальций и для восстановления клеток всего организма. Если в рационе питания отсутствует органический кальций, то от этого будут страдать не только кости, но и другие части тела.В естественных минералах нуждаются не только позвоночник и кости, но и спинной мозг. Наиболее характерным признаком недостатка кальция в крови является повышенная нервная возбудимость(нервные волокна не проводят соответствующие сигналы, тело не расслабляется). У детей такое состояние сопровождается капризным поведением, вспышками раздражения, могут появиться мышечные судороги, спазмы.Суточная потребность в кальции - 800 - 1100 мг.Больше всего кальция содержится в молоке и молочных продуктах, а также в овощах с зелёными листьями, в кочанной капусте, черносливе, крапиве, красном перце, петрушке, мяте перечной, подорожнике, в блюдах из овсянки и плодах шиповника.
14. Факторы, влияющие на метаболизм кости. К факторам, влияющим на метаболизм костной ткани, прежде всего следует отнести гормоны, ферменты и витамины. Многие аспекты данной проблемы уже рассматривались в предыдущих главах. В данном разделе будут приведены лишь краткие сведения.Известно, что минеральные компоненты костной ткани находятся практически в состоянии химического равновесия с ионами кальция и фосфата сыворотки крови. Поступление, депонирование и выделение кальция и фосфата регулируются весьма сложной системой, в которой среди других факторов важная роль принадлежит паратгормону (гормон околощитовидных желез) и кальцитонину (гормон щитовидной железы). При уменьшении концентрации ионов Са2+ в сыворотке крови возрастает секреция паратгормона (см. гл. 8). Непосредственно под влиянием этого гормона в костной ткани активируются клеточные системы, участвующие в резорбции кости (увеличение числа остеокластов и их метаболической активности), т.е. остеокласты способствуют повышенному растворению содержащихся в костях минеральных соединений. Заметим, что паратгор-мон увеличивает также реабсорбцию ионов Са2+ в почечных канальцах. Суммарный эффект проявляется в повышении уровня кальция в сыворотке крови.В свою очередь при увеличении содержания ионов Са2+ в сыворотке крови секретируется гормон кальцитонин, действие которого состоит в снижении концентрации ионов Са2+ за счет отложения его в костной ткани. Иными словами, кальцитонин повышает минерализацию кости и уменьшает число остеокластов в зоне действия, т.е. угнетает процесс костной резорбции. Все это увеличивает скорость формирования кости.В регуляции содержания ионов Са2+ важная роль принадлежит витамину D, который участвует в биосинтезе Са2+-связывающих белков. Эти белки необходимы для всасывания ионов Са2+ в кишечнике, реабсорбции их в почках и мобилизации кальция из костей. Поступление в организм оптимальных количеств витамина D является необходимым условием для нормального течения процессов кальцификации костной ткани. При недостаточности витамина D эти процессы нарушаются. Прием в течение длительного времени избыточных количеств витамина D приводит к деминерализации костей.На развитие кости влияет также витамин А. Прекращение роста костей является ранним проявлением недостаточности витамина А. Считают, что данный факт обусловлен нарушением синтеза хондроитинсуль-фата. Показано также, что при введении животным высоких доз витамина А, превышающих физиологическую потребность и вызывающих развитие гипервитаминоза А, наблюдается резорбция кости, что может приводить к переломам.Для нормального развития костной ткани необходим витамин С. Действие витамина С не метаболизм костной ткани обусловлено прежде всего влиянием на процессе биосинтеза коллагена. Аскорбиновая кислота необходима для осуществления реакции гидроксилированияпролина и лизина. При недостаточности витамина С остеобласты не синтезируют «нормальный» коллаген, что приводит к нарушениям процессов обызвествления костной ткани. Недостаток витамина С вызывает также изменения в синтезе гликозаминогликанов: содержание гиалуроновой кислоты в костной ткани увеличивается в несколько раз, тогда как биосинтез хондроитин-сульфатов замедляется.
Структура и свойства коллагена. Коллаге́н — фибриллярный белок, составляющий основу соединительной ткани организма (сухожилие, кость, хрящ, дерма и т. п.) и обеспечивающий её прочность и эластичность. Коллаген обнаружен у многоклеточных животных; отсутствует у растений, бактерий, вирусов, простейших и грибов. Это основной компонент соединительной ткани и самый распространённый белок у млекопитающих, составляющий от 25% до 35% белков во всём теле. Свойства. Продуктом денатурации коллагена является желатин. Температура денатурации макромолекулы коллагена близка к температуре фибриллогенеза. Это свойство молекулы коллагена делает её максимально чувствительной к мутационным заменам. Структура. Молекула коллагена представляет собой правозакрученную спираль из трёх α-цепей. Такое образование известно под названием тропоколлаген. Один виток спирали α-цепи содержит три аминокислотных остатка. Молекулярная масса коллагена около 300 кДа, длина 300 нм, толщина 1,5 нм. Для первичной структуры белка характерно высокое содержание глицина, низкое содержание серосодержащих аминокислот и отсутствие триптофана. Коллаген относится к тем немногим белкам животного происхождения, которые содержат остатки нестандартных аминокислот: около 21 % от общего числа остатков приходится на 3-гидроксипролин, 4-гидроксипролин и 5-гидроксилизин[4]. Каждая из α-цепей состоит из триад аминокислот. В триадах третья аминокислота всегда глицин, вторая — пролин или лизин, первая — любая другая аминокислота, кроме трёх перечисленных[3]. Коллаген существует в нескольких формах. Основная структура всех типов коллагена является схожей. Коллагеновые волокна образуются путём агрегации микрофибрилл, имеют розовый цвет при окраске гематоксилином и эозином и голубой или зелёный при различных треххромных окрасках, при импрегнации серебром окрашиваются в буро-жёлтый цвет. Фибриллярная структура Тропоколлагены (структурные единицы коллагена) спонтанно объединяются, прикрепляясь друг к другу смещенными на определённое расстояние концами, образуя в межклеточном веществе более крупные структуры. В фибриллярных коллагенах молекулы смещены относительно друг друга примерно на 67нм (единица, которая обозначается буквой «D» и меняется в зависимости от состояния гидратации вещества). В целом каждый D-период содержит четыре целых и часть пятой молекулы коллагена. Величина 300 нм, поделенная на 67 нм (300:67) не дают целого числа и длина молекулы коллагена разделена на непостоянные по величине отрезки D. Следовательно, в разрезе каждого повтора D-периода микрофибриллы есть часть, состоящая из пяти молекул, называемая «перекрытие», и часть, состоящая из четырёх молекул — «разрыв». Тропоколлагены к тому же скомпонованы в шестиугольную или псевдошестиугольную (в поперечном разрезе) конструкцию, в каждой области «перекрытия» и «разрыва». Внутри тропоколлагенов существует ковалентная связь между цепями, а также некоторое непостоянное количество данных связей между самими тропоколагеновыми спиралями, образующими хорошо организованные структуры (например, фибриллы). Более толстые пучки фибрилл формируются с помощью белков нескольких других классов, включая другие типы коллагенов, гликопротеины, протеогликаны, использующихся для формирования различных типов тканей из разных комбинаций одних и тех же основных белков. Нерастворимость коллагена была препятствием к изучению мономера коллагена, до того момента как было обнаружено, что возможно извлечь тропоколлаген молодого животного, поскольку он ещё не образовал сильных связей с другими субъединицами фибриллы. Тем не менее, усовершенствование микроскопов и рентгеновских аппаратов облегчили исследования, появлялось все больше подробных изображений структуры молекулы коллагена. Эти поздние открытия очень важны для лучшего понимания того, как структура коллагена влияет на связи между клетками и межклеточным веществом, как ткани меняются во время роста и регенерации, как они меняются во время эмбрионального развития и при патологии. Коллагеновая фибрилла — это полукристаллическая структурная единица коллагена. Коллагеновые волокна — это пучки фибрилл.
2.Цинга. Процессы гидроксилированияпролина и лизина, их роль в возникновении цинги. Цинга́ — болезнь, вызываемая острым недостатком витамина C (аскорбиновая кислота), который приводит к нарушению синтеза коллагена, и соединительная ткань теряет свою прочность. Гидроксилированиепролина и лизина начинается в период трансляции коллагеновой мРНК на рибосомах и продолжается на растущей полипептидной цепи вплоть до её отделения от рибосом. После образования тройной спирали дальнейшее гидроксилированиепролиловых и лизиловых остатков прекращается. Реакции гидроксилирования катализируют ок-сигеназы, связанные с мембранами микросом. Пролиловые и лизиловые остатки в Y-положении пептида (Гли-х-у)n подвергаются действию, соответственно, пролил-4-гидроксилазы и лизил-5-гидроксилазы. Пролил-3-гидроксилаза действует на некоторые остатки пролина в Х-положениях. Необходимыми компонентами этой реакции являются оскетоглутарат, О2 и витамин С (аскорбиновая кислота). Донором атома кислорода, который присоединяется к С-4 пролина, является молекула О2, второй атом О2 включается в сукцинат, который образуется при декарбоксилировании α-кетоглутарата, а из карбоксильной группы а-кетоглутарата образуется СО2 (см. схему А на с. 691). Гидроксилазыпролина и лизина содержат в активном центре атом железа Fe2+. Для сохранения атома железа в ферроформе необходим восстанавливающий агент. Роль этого агента выполняет кофермент гидроксилаз - аскорбиновая кислота, которая легко окисляется в дегидроаскорбиновую кислоту. Обратное превращение происходит в ферментативном процессе за счёт восстановленного глутатиона (см. схему Б на с. 691). Гидроксилированиепролина необходимо для стабилизации тройной спирали коллагена, ОН-группыгидроксипролина (Hyp) участвуют в образовании водородных связей. А гидроксилирование лизина очень важно для последующего образования ковалентных связей между молекулами коллагена при сборке коллагеновых фибрилл. При цинге - заболевании, вызванном недостатком витамина С, нарушается гидроксилирование остатков пролина и лизина. В результате этого образуются менее прочные и стабильные коллагеновые волокна, что приводит к большой хрупкости и ломкости кровеносных сосудов с развитием цинги. Клиническая картина цинги характеризуется возникновением множественных точечных кровоизлияний под кожу и слизистые оболочки, кровоточивостью дёсен, выпадением зубов, анемией.
|
||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 2555; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.172.243 (0.014 с.) |