Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация систем массового обслуживания.

Поиск

При исследовании операций часто приходится сталкиваться с работой своеобразных систем, называемых системами массового обслуживания (СМО). Примерами таких систем могут служить: телефонные станции, ремонтные мастерские, билетные кассы, справочные бюро, магазины, парикмахерские и т. п.

Каждая СМО состоит из какого-то числа обслуживающих единиц (или «приборов»), которые мы будем называть каналами обслуживания. Каналами могут быть: линии связи, рабочие точки, кассиры, продавцы, лифты, автомашины и др. СМО могут быть одноканальными и многоканальными.

Всякая СМО предназначена для обслуживания какого-то потока заявок (или «требований»), поступающих в какие-то случайные моменты времени. Обслуживание заявки продолжается какое-то, вообще говоря, случайное время , после чего канал освобождается и готов к приему следующей заявки. Случайный характер потока заявок и времен обслуживания приводит к тому, что в какие-то периоды времени на входе СМО скапливается излишне большое число заявок (они либо становятся в очередь, либо покидают СМО необслуженными); в другие же периоды СМО будет работать с недогрузкой или вообще простаивать.

Процесс работы СМО представляет собой случайный процесс с дискретными состояниями и непрерывным временем; состояние СМО меняется скачком в моменты появления каких-то событий (или прихода новой заявки, или окончания обслуживания, или момента, когда заявка, которой надоело ждать, покидает очередь).

Предмет теории массового обслуживания — построение математических моделей, связывающих заданные условия работы СМО (число каналов, их производительность, правила работы, характер потока заявок) с интересующими нас характеристиками — показателями эффективности СМО, описывающими, с той или другой точки зрения, ее способность справляться с потоком заявок.

В качестве таких показателей (в зависимости от обстановки и целей исследования) могут применяться разные величины, например: среднее число заявок, обслуживаемых СМО в единицу времени; среднее число занятых каналов; среднее число заявок в очереди и среднее время ожидания обслуживания; вероятность того, что число заявок в очереди превысит какое-то значение, и т. д. Среди заданных условий работы СМО мы намеренно не выделяем элементов решения: ими могут быть, например, число каналов, их производительность, режим работы СМО и т. д. Важно уметь решать прямые задачи исследования операций, а обратные ставятся и решаются в зависимости от того, какие именно параметры нам нужно выбирать или изменять. Что касается задач оптимизации, то мы ими здесь почти не будем заниматься, разве только в простейших случаях.

Математический анализ работы СМО очень облегчается, если процесс этой работы — марковский. Мы уже знаем, что для этого достаточно, чтобы все потоки событий, переводящие систему из состояния в состояние (потоки заявок, потоки «обслуживании»), были простейшими. Если это свойство нарушается, то математическое описание процесса становится гораздо сложнее и довести его до явных, аналитических формул удается лишь в редких случаях. Однако все же аппарат простейшей, марковской теории массового обслуживания может пригодиться для приближенного описания работы СМО даже в тех случаях, когда потоки событий — не простейшие. Во многих случаях для принятия разумного решения по организации работы СМО вовсе и не требуется точного знания всех ее характеристик — зачастую достаточно и приближенного, ориентировочного.

Системы массового обслуживания делятся на типы (или классы) по ряду признаков. Первое деление: СМО с отказами и СМО с очередью. В СМО с отказами заявка, поступившая в момент, когда все каналы заняты, получает отказ, покидает СМО и в дальнейшем процессе обслуживания не участвует. Примеры СМО с отказами встречаются в телефонии: заявка на разговор, пришедшая в момент, когда все каналы связи заняты, получает отказ и покидает СМО необслуженной.

В СМО с очередью заявка, пришедшая в момент, когда все каналы заняты, не уходит, а становится в очередь и ожидает возможности быть обслуженной. На практике чаще встречаются (и имеют большее значение) СМО с очередью; недаром теория массового обслуживания имеет второе название: «теория очередей».

СМО с очередью подразделяются на разные виды, в зависимости от того, как организована очередь — ограничена она или не ограничена. Ограничения могут касаться как длины очереди, так и времени ожидания (так называемые «СМО с нетерпеливыми заявками»). При анализе СМО должна учитываться также и «дис-циплина обслуживания» — заявки могут обслуживаться либо в порядке поступления (раньше пришла, раньше обслуживается), либо в случайном порядке, [ередко встречается так называемое обслуживание с приоритетом — некоторые заявки обслуживаются вне очереди. Приоритет может быть как абсолютным — когда заявка с более высоким приоритетом «вытесняет» из-под обслуживания заявку с низшим (например, пришедший в парикмахерскую клиент высокого ранга прогоняет с кресла обыкновенного клиента), так и относительным — когда начатое обслуживание доводится до конца, а заявка с более высоким приоритетом имеет лишь право на лучшее место в очереди.

Существуют СМО с так называемым многофазовым обслуживанием, состоящим из нескольких последовательных этапов или «фаз» (например, покупатель, пришедший в магазин, должен сначала выбрать товар, затем оплатить его в кассе, затем получить на контроле).

Кроме этих признаков, СМО делятся на два класса: «открытые» и «замкнутые». В открытой СМО характеристики потока заявок не зависят от того, в каком состоянии сама СМО (сколько каналов занято). В замкнутой СМО — зависят. Например, если один рабочий обслуживает группу станков, время от времени требующих наладки, то интенсивность потока «требований» со стороны станков зависит от того, сколько их уже неисправно и ждет наладки. Это — пример замкнутой СМО. Классификация СМО далеко не ограничивается приведенными их разновидностями, но мы ограничимся ими.

Оптимизация работы СМО может производиться под разными углами зрения: с точки зрения организаторов (или владельцев) СМО или с точки зрения обслуживаемых клиентов. С первой точки зрения желательно «выжать все, что возможно» из СМО и добиться того, чтобы ее каналы были предельно загружены. С точки зрения клиентов желательно всемерное уменьшение очередей, которые зачастую становятся настоящим «бичом быта», приводя к бессмысленной трате сил и времени и, в конечном итоге, к понижению производительности труда. При решении задач оптимизации в теории массового обслуживания существенно необходим «системный подход», полное и комплексное рассмотрение всех последствий каждого решения. Например, с точки зрения клиентов СМО желательно увеличение числа каналов обслуживания; но ведь работу каждого канала надо оплачивать, что удорожает обслуживание. Построение математической модели позволяет решить оптимизационную задачу о разумном числе каналов с учетом всех «за» и «против». Поэтому мы не выделяем в задачах массового обслуживания какого-либо одного показателя эффективности, а сразу ставим эти задачи как многокритериальные.

Все перечисленные выше разновидности СМО (и многие другие, здесь не упомянутые) исследуются в теории массового обслуживания, литература по которой в настоящее время достигла огромных размеров. Мы назовем только несколько книг: [13—17]. Кроме того, разделы, посвященные теории массового обслуживания, имеются в ряде книг по исследованию операций: [1, 6, 7]. Однако почти нигде изложение не ведется на должном методическом уровне: выводы часто проводятся излишне сложно; верные (почти всегда) формулы доказываются не лучшим путем. В настоящем (по необходимости кратком) изложении теории массового обслуживания мы приведем два методических приема, позволяющих сильно упростить выводы формул. Этим приемам будет посвящен следующий парагра



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 313; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.103.100 (0.008 с.)