Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Вычисление координат пунктов разомкнутого линейно-углового ходаСодержание книги
Поиск на нашем сайте
Каждый определяемый пункт линейно-углового хода имеет две координаты X и Y, которые являются неизвестными и которые нужно найти. Общее количество пунктов в ходе обозначим через n, тогда количество неизвестных будет 2 * (n - 2), так как у двух пунктов (исходных начального и конечного) координаты известны. Для нахождения 2 * (n - 2) неизвестных достаточно выполнить 2 * (n - 2) измерений. Подсчитаем, сколько измерений выполняется в разомкнутом линейно-угловом ходе: на n пунктах измерено n углов - по одному на каждом пункте, измерены также (n - 1) сторон хода, всего получается (2 * n - 1) измерений (рис.2.18). Разность между количеством выполненных измерений и количеством необходимых измерений равна: (2.65) то-есть, три измерения являются избыточными: это угол на предпоследнем пункте хода, угол на последнем пункте хода и последняя сторона хода. Но тем не менее, эти измерения выполнены, и их необходимо использовать при вычислении координат пунктов хода. В геодезических построениях каждое избыточное измерение порождает какое-либо условие, поэтому количество условий равно количеству избыточных измерений; в разомкнутом линейно-угловом ходе должны выполняться три условия: условие дирекционных углов и два координатных условия. Условие дирекционных углов. Вычислим последовательно дирекционные углы всех сторон хода, используя формулу передачи дирекционного угла на последующую сторону хода: (2.66) Сложим эти равенства и получим: Это - математическая запись первого геометрического условия в разомкнутом линейно-угловом ходе. Для правых углов поворота оно запишется так: (2.68) Сумма углов, подсчитанная по формулам (2.67) и (2.68), называется теоретической суммой углов хода. Сумма измеренных углов вследствие ошибок измерений, как правило, отличается от теоретической суммы на некоторую величину, называемую угловой невязкой и обозначаемую fβ: (2.69) Допустимое значение угловой невязки можно рассматривать как предельную ошибку суммы измеренных углов: (2.70) Используем известную формулу из теории ошибок для нахождения средней квадратической ошибки функции в виде суммы аргументов (раздел 1.11.2): (2.71) При После подстановки (2.72) в (2.70) получаем: (2.73) Для теодолитных ходов mβ = 30", поэтому: (2.74) Одним из этапов уравнивания является введение поправок в измеренные величины с целью приведения их в соответствие с геометрическими условиями. Обозначим поправку в измеренный угол Vβ и запишем условие: откуда следует, что: (2.75) то-есть, поправки в углы следует выбрать так, чтобы их сумма была равна угловой невязке с противоположным знаком. В уравнении (2.75) n неизвестных, и для его решения необходимо наложить на поправки Vβ (n-1) дополнительных условий; наиболее простым вариантом таких условий будет: (2.76) то-есть, все поправки в измеренные углы одинаковы. В этом случае решение уравнения (2.75) получается в виде: (2.77) это означает, что угловая невязка fβ распределяется с обратным знаком поровну во все измеренные углы. Исправленные значения углов вычисляются по формуле: (2.78) По исправленным углам поворота вычисляют дирекционные углы всех сторон хода; совпадение вычисленного и заданного значений конечного исходного дирекционного угла является контролем прави льности обработки угловых измерений. Координатные условия. Решая последовательно прямую геодезическую задачу, вычислим приращения координат по каждой стороне хода ΔXi и ΔYi. Координаты пунктов хода получим по формулам: (2.79) Сложим эти равенства и получим для приращений ΔXi: После приведения подобных имеем: (2.80) Аналогичная формула для суммы приращений ΔY имеет вид: (2.81) Получились еще два условия (2.80) и (2.81), которые называются координатными. Суммы приращений координат, подсчитанные по этим формулам, называются теоретическими суммами приращений. Вследствие ошибок измерения сторон и упрощенного способа распределения угловой невязки суммы вычисленных приращений координат в общем случае не будут равны теоретическим суммам; возникают так называемые координатные невязки хода: (2.82) по которым вычисляют абсолютную невязку хода: (2.83) и затем относительную невязку хода: (2.84) Уравнивание приращений ΔX и ΔY выполняют следующим образом. Сначала записывают суммы исправленных приращений: и приравнивают их теоретическим суммам: откуда следует, что: (2.85) В этих уравнениях по (n - 1) неизвестных и для их решения необходимо наложить на поправки VX и VY дополнительные условия. На практике поправки в приращения координат вычисляют по формулам: (2.91) которые соответствуют условию "поправки в приращения координат пропорциональны длинам сторон". Рассмотренный способ обработки измерений в линейно-угловом ходе можно назвать способом последовательного распределения невязок; строгое уравнивание линейно-углового хода выполняется по методу наименьших квадратов. После уравнивания одиночного линейно-углового хода ошибки положения его пунктов неодинаковы; они возрастают от начала и конца хода к его середине, и наибольшую ошибку положения имеет пункт в середине хода. В случае приближенного уравнивания эта ошибка оценивается половиной абсолютной невязки хода fs. При строгом уравнивании хода производится сплошная оценка точности, то-есть вычисляются ошибки положения каждого пункта хода, ошибки дирекционных углов всех сторон хода, а также ошибки уравненных значений углов и сторон хода.
|
||||
Последнее изменение этой страницы: 2016-06-29; просмотров: 317; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.15.22 (0.009 с.) |