Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Ятрогения («наведенные» болезни).Содержание книги
Поиск на нашем сайте
При достаточно высокой осведомленности в ряде вопросов медико-биологической направленности и мнительности спортсмена возможны соматические заболевания, в которых ведущую роль играет психоэмоциональная составляющая (фобии). 8. Лекарства – опасность интоксикации: – необоснованное применение; – несоблюдение дозировки; – назначение большого числа препаратов; – допинг. 9. Ограниченное и несистемное использование профилактических, лечебных, восстановительных средств в годичном цикле тренировок. – несоблюдение сроков ежегодной диспансеризации; – отсутствие достаточного набора медицинских методик при обследовании; – невозможность использовать все средства восстановления; – несоблюдение правил самоконтроля.
II СИСТЕМА КЛЕТОЧНОЙ РЕГУЛЯЦИИ НА МОЛЕКУЛЯРНОМ УРОВНЕ
Глубокое, всестороннее понимание последовательности разнообразных процессов, происходящих в организме, позволяет выбрать наиболее рациональные варианты тренировочной программы, профилактики перетренированности и оптимальные схемы лечения патологических состояний. Подобное понимание проблемы возможно только после изучения этих процессов в клетке на молекулярном уровне. На уровне клетки существуют три системы, от взаимодействия которых зависит конечный результат – приведет ли стрессорное воздействие тренировки на организм к переходу функционального состояния спортсмена на более высокий уровень или негативно отразится на его здоровье. Первая система функционирует на уровне клеточных структур, влияющих на изменение клеточного гомеостаза. Вторая система связана с механизмами, ограничивающими повреждение клетки при ее активации. Третья система направлена на восстановление внутриклеточного гомеостаза и поврежденных участков клетки. Любое стрессорное воздействие на организм в конечном счете достигает своей основной цели – клетки. Общение окружающей среды с каждой клеткой организма реализуется посредством организованных потоков газов, составляющих воздушную среду, питательных веществ, а также многочисленных команд, направляемых в каждую клетку с помощью трех регуляторных систем, обеспечивающих координацию работы всего организма и оперативно меняющих функционирование органа, ткани, клетки в связи с переменами, происходящими вне или внутри организма. Ответная реакция клетки возможна только после ее активации, которая происходит при сохранении интенсивно функционирующих мембранных структур и рецепторного аппарата на клеточной мембране. Первая ключевая система, оказывающая непосредственное воздействие на здоровье и долголетие человека, – это мембранная структура клеток, их химический состав, микровязкость, величина мембранного потенциала, наличие достаточного числа клеточных рецепторов. Все перечисленные параметры чувствительны к количеству, силе и продолжительности стрессорных воздействий. Поэтому первоочередной задачей становится исключение, по возможности, воздействия на организм сильных и продолжительных стрессорных факторов (отрицательные эмоции, продолжительное пребывание в условиях высоких или низких температур), а также отказ от вредных привычек. Но это не означает необходимости полного устранения всех стрессов. Организм спортсмена испытывает стрессор-ные нагрузки во время тренировок и соревнований, однако степень их воздействия на ткани должна быть адекватно дозированной. Сильные стрессы, как правило, заканчиваются необратимыми повреждениями клеточных структур, которые постепенно переводят организм на все более низкий уровень адаптационных возможностей. Вторая клеточная система ограничивает повреждение клеток в период их активации. В ее основе лежит система антиоксидантной защиты, однако правильнее оценивать результат ее взаимодействия с прооксидантной системой, генерирующей активные формы кислорода. Нарушение баланса между двумя системами в пользу синтеза активных форм кислорода, наблюдаемое при большинстве патологических состояний, означает ускорение старения организма. Наоборот, витаминизация, сбалансированное питание, поддержка пластическими препаратами, целенаправленная коррекция функций органов и систем способствуют сохранению здоровья. В частности, потребность в витаминах зависит от физической нагрузки (увеличивается с ее возрастанием) и растет с годами. Но их передозировка, особенно витаминов А и Е, столь же опасна, как и их дефицит. Третья и, вероятно, важнейшая система (особенно влияющая на работоспособность и продолжительность спортивной карьеры) – энергопродуцирующая. С нарастанием объема и интенсивности физической нагрузки, с увеличением спортивного стажа и возраста, энергетический запрос со стороны клетки непрерывно растет, а энергопродуцирующие ее функции снижаются. Со временем данная функция начинает оказывать решающее влияние на судьбу каждой клетки и всего организма в целом. Работа клеток в неблагоприятных условиях, особенно при кислородной недостаточности тканей, в условиях, осложненных хроническим воспалением, вызывает значительный выброс активных форм кислорода и несет основную ответственность за повреждение и гибель энергопроду-цирующих станций – митохондрий. Адекватный тренировочный процесс, сбалансированное питание, фармакологическая поддержка способствуют более эффективной доставке в ткани кислорода и питания, повышают энергетику клетки и, как следствие, ускоряют процессы репарации. Все клеточные системы взаимосвязаны и образуют единую клеточную регуляторную систему циклического типа. Знание принципов ее работы позволяет выработать определенные правила проведения каждой тренировки, годичного тренировочного цикла, системы восстановительных мероприятий, которые: во-первых, будут способствовать сохранению физико-химических параметров клеточных мембран (при исключении воздействия чрезмерных и продолжительных стрессов); во-вторых, обеспечат необходимый уровень антиоксидантов и, наконец, сохранят энер-гопродуцирующие функции клеток (при физических нагрузках, соответствующих физиологическим возможностям). При развитии патологии или старении организма происходит последовательное повреждение клеточных структур:
истощение антиоксидантной системы > повреждение биомембран > появление энергодефицитного состояния
Данную последовательность целесообразно учитывать при разработке схем терапевтической коррекции. Медицинский аспект повышения работоспособности состоит в разработке и применении таких средств, которые, не препятствуя восприятию сигналов утомления, отдаляли бы наступление утомления за счет расширения биохимических и функциональных резервов организма, но не за счет их истощения (Бобков Ю.Г.).
III КОРРЕКЦИЯ ФАКТОРОВ, ОГРАНИЧИВАЮЩИХ РАБОТОСПОСОБНОСТЬ СПОРТСМЕНА
Энергообеспечение мышц
Энергетическое обеспечение клетки включает три составляющие: химическую в виде набора макроэргов, локализованных в цитоплазме; электрическую (мембранный потенциал) и осмотическую (неравномерное распределение ионов по разным сторонам клеточной мембраны). Все три составляющие равнозначны и взаимосвязаны (рис. 1). Мышечные клетки располагают двумя энергопреобразующими системами: дыхательной цепью и гликолизом. Регуляция работы каждой из систем и их взаимодействие в значительной степени реализуются на молекулярном уровне. Обе системы полиферментные, т е. образование макроэргов – результат различных последовательных реакций. В силу конструктивных особенностей мышечной ткани глико-литический процесс может стать оптимальным только через 40-50 с после начала мышечных сокращений. Дыхательная цепь еще более инертна, и она по энергопроизводительности может сравниваться с гликолизом только через 70 с после начала работы. Для начала работы (особенно в спринте) требуется огромная, быстро реализуемая энергия. Во время бега спринтеры расходуют свои внутренние резервы в виде макроэргических соединений. Первое «резервное топливо» – молекулы АТФ. Депонированная в АТФ энергия может быть быстро преобразована в мышечную. Имеющиеся запасы АТФ в тканях невелики, их хватает спринтеру лишь на 2 с забега. Затем начинает отдавать энергию другое энергетическое депо, находящееся в мышечных клетках – креатинфосфат. Его запасов хватает еще на 10-12 с. Поэтому на победу в спринте могут рассчитывать лишь те спортсмены, организм которых способен накапливать значительный резерв высокоэнергетических веществ – макроэргов (фосфагенов). Универсальный источник энергии в клетке (в том числе и мышечной) – свободная энергия макроэргической фосфатной связи аденозинтрифосфата (АТФ), освобождаемая при гидролизе (распаде) АТФ до АДФ[1]и АМФ[2]и неорганического фосфора. Если концентрация АТФ велика, то ингибируются ферменты, участвующие в его синтезе. При снижении концентрации АТФ и увеличении концентрации АДФ активируется дыхательная цепь, а при росте концентрации АМФ – гликолиз. При систематически повышенном энергетическом запросе включается более высокий, клеточный уровень регуляции энерго-преобразующей системы, приводящий к индукции (а при снижении энергетического запроса – к репрессии) синтеза новых ферментов для энергетических цепей. Индукция или репрессия ферментов становятся в этом случае наиболее простым и экономичным способом адаптации клеток к новым условиям (табл. 1).
Поддержание энергетического гомеостаза в клетке осуществляется в автоматическом режиме при сохранении постоянства внутриклеточной среды (табл. 2).
Таблица 1
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 287; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.104.36 (0.007 с.) |