Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Перенос, растяжение, поворот вокруг точки плоскостейСодержание книги
Поиск на нашем сайте
Перенос Точка (x, y) переносится в точку(x”, y”) путем перемещения на вектор (tx, ty), т. е. x” =1 *x+ 0 *y+tx; y ”=0 *x +1 *y+ty. Этому преобразованию соответствует матрица Растяжение. При таком преобразовании координата x уменьшается на cx, а y*cy. x”=cx*x +0 *y +0; y”= 0* x+cy*y +0 Матрица имеет вид: обычно cx, cy положительны, но они могут быть и отрицательными. Например, если cx =-1, cy =1, то имеем симметрию относительно cy. Вращение относительно начало координат. Будем поворачивать на угол против часовой стрелки (положительное направление): Матрица: Представление точек, прямых, плоскостей в пространстве. Стандартные задачи. Над трехмерными векторами можно производить две операции: умножать на число - К * (X,Y,Z) = (K*X,K*Y,K*Z); складывать - сумма векторов Р1=(X1,Y1,Z1) и Р2=(X2,Y2,Z2) есть вектор (X1+Х2, Y1+Y2, Z1+Z2), то есть при сложении векторов соответствующие координаты складываются. Определение прямой. Теперь мы определили прямую, проходящую через две точки (X1,Y1,Z1), (X2,Y2,Z2), что можно сделать, задав уравнение этой прямой: (X-X1)*(Y2-Y1)=(Y-Y1)*(X2-X1), (Y-Y1)*(Z2-Z1)=(Z-Z1)*(Y2-Y1), (Z-Z1)*(X2-X1)=(X-X1)*(Z2-Z1). Хотя здесь приведены три уравнения, их решение определяет прямую, а не единственную точку, что связано с тем, что эти уравнения линейно зависимы так, что, задавая одну из координат, можно однозначно получить значение двух других. Так же, как и в случае двух измерений, это не единственный способ задавать прямую. Существует еще параметрический способ задания прямой, проходящей через точки Р1 иР2: P(M) = (1-M)*P1 + M*P2, или I P(M)=((1-M)*X1+M*X2, (1-M)*Y1+M*Y2, (1-M)*Z1+M*Z2), где M - действительный параметр. Параметрический вид прямой в точности совпадает с двумерным случаем. Если M = 1 дает точку Р2, а М = 0 - точку Р1. Мы можем записать параметрическое уравнение кривой в таком виде: P(M) = Р1 + M*(P2 - P1). вектор Р1 называется базовым вектором, а вектор (Р2-Р1) - направляющим вектором. Определим норму вектора (которую так же называют модулем вектора, его длиной), обозначаемую ABS(P), как расстояние от точки, определяемой вектором, до начала координат: ABS(D) = SQRT(X^2 + Y^2 + Z^2). Если вектор D=(X,Y,Z) составляет с осью X, Y, Z углы ТЕТx, TETy и TETz, то X:Y:Z = COS(TETX): COS(TETY): COS(TETZ) -/ Координаты единичного вектора назыв. направляющими косинусами. Определение плоскости. Точки плоскости задаются уравнением: N*X=K, где К - скаляр, а N - вектор, перпендикулярный плоскости Если А принадлежит плоскости, то N*A = К, заменяя К в предыдущем уравнении получим: N*X=N*A, N*(X-A)=0. откуда N*(X-A)=0 откуда (X-A) принадлежит пл-ти откуда N-норм-ый вектор к плоскости. Функциональное представление поверхности. Мы видели, что в двумерном случае кривые можно задавать с помощью функциональных зависимостей. Этот метод можно использовать для исследования поверхностей в трехмерном пространстве. Простейшей формой поверхности является плоскость с нормалью N = (N1, N2, N3), которая, как мы знаем, задается уравнением: N*X-K = N1*X+N2*Y+N3*Z-K = 0, которое можно переписать в функциональной форме: F(X)=F(X,Y,Z)=N1*X+N1*Y+N*Z-K=N*X-K, где X=(X,Y,Z). Это простое выражение позволяет нам разбить пространство на три множества: множество точек Х таких, что F(X) < 0 - отрицательная область, множество точек X, лежащих на плоскости, таких, что F(X) = 0, и множество точек Х таких, что F(X)>0 - положительная область. Если поверхность разбивает пространство на две связные области (область называется связной, если любые две точки области можно соединить кривой, целиком лежащей в этой области), то эти области можно отождествлять с областью положительных и отрицательных значений. Следует иметь в виду, что многие поверхности делят пространство на большое число компонентов. Примером такой поверхности является поверхность, задаваемая уравнением: F(X,Y,Z) = COS(Y) - SIN(Х^2+Z^2). Однако имеется ряд поверхностей, удовлетворяющих требуемому условию. Примером такой поверхности является сфера: F(X)=R^2-ABS(X)^2. Или по компонентам: F(X,Y,Z)=R^2-X^2-Y^2-Z^2. Если F(X) = 0, то Х лежит на сфере, если F(X)<0, то точка лежит вне сферы, если F(X)>0, то точка лежит внутри сферы. Функциональное представление поверхностей весьма полезно при нахождении точек пересечения поверхностей. Однако это представление особенно ценно при выяснении того, лежат ли две точки Р и Q по одну сторону от поверхности. Для этого достаточно сравнить знаки F(P) и F(Q): если они одного знака, то точки Р и Q лежат по одну сторону от поверхности, а если разного - то по разные, что означает, что любая кривая, соединяющая Р и Q, пересекает поверхность хотя бы в одной точке. Ниже приведен пример, иллюстрирующий вышесказанное.
Алгебра высказываний. Нормальные формы. Совершенные нормальные формы. Теорема существования нормальной формы. Приложение алгебры высказываний к логико-математической практике. Алгебра выск. – это раздел матем., изуч выск-я, рассм. со стороны их логич. зн-й (ист-ти или лож-ти) и логич. операций над ними. Алгебра выск. возникла в середине ХIХ века в трудах англ. матем. Буля. Высказывание – повествовательное предложение, кот. либо ист., либо ложно. Существует 5 видов логических операций. Отрицание выск. А – выск. А, кот ист. ттт, когда А – ложно. Конъюнкция (дизъюнкция) выск. А и В – новое выск. А В (А В), ист. ттт, когда А и В – ист (ложны). Импликация – выск. А В, ложное ттт, когда А – ист., В – ложно. Эквиваленция – выск. А В, ист. ттт, когда оба приним. одинак. зн-я. Переменные вместо которых можно подставить высказывания называют позициональными или переменными высказываниями. 1. Всякая пропозициональная перем. есть ф-ла. 2. Если А и В – ф-лы, то А, А В, А В, А В, А В – ф-лы. 3. Других ф-л нет. классификация формул алгеб.выс-й:1. Ф-ла F(x1 …xn) наз-ся выполнимой (опровержимой) если существует ее истинная (ложная) конкретизация. 2. Ф-ла F(x1 …xn) наз-ся тавтологией или тождественно истинной (ложной) тавтологией, если любая ее конкретизация истина (ложна). Две формулы F(x1 …xn) и G(x1 …xn) будем наз-ть равносильными, если для любых конкретных высказываний А1 …Аn их конкретизации совпадают, т.е. . Т1. Две формулы F и H равносильны ó формула F H является тавтологией. Одной из равносильных формул является нормальная форма. Конъюнктивным одночленом от перем. x1 …xn наз-ся конъюнкция этих перем. и их отрицаний. Дизъюнктивным одн-ном от перем. x1 …xn наз-ся дизъ. этих перем. и их отрицаний. ДНФ от перем. x1 …xn наз-ся дизъ. конъюнктивных одн-в от этих перем. КНФ от перем. x1 …xn наз-ся конъ. дизъюнктивных одн-в от этих перем. Очевидно, что у данной формулы F существует неограниченно много как дизъюнктивных, так и конъюнктивных нормальных форм. Одни из них более громоздкие и сложные, другие – более простые. Среди множества дизъюнктивных (конъюнктивных) нормальных форм, которыми обладает данная формула, существует уникальная форма – единственная для данной формулы. Конъюнктивный (дизъюнктивный) одночлен наз-ся совершенным, если в нем каждая переменная встречается только один раз, с отрицанием или без. ДНФ наз-ся с овершенной, если все конъюнктивные одночлены совершенны. КНФ наз-ся совершенной, если все дизъюнктивные одночлены совершенны. Т1. Для любой нетождественно ист. ф-лы алгебры выск. сущ-ет единств. равносильная СКНФ. Т2. Для любой нетождественно лож. ф-лы алгебры выск. сущ-ет единств. равносильная СДНФ. Приложение. А В – прямая т-ма. В"А – обратная. А В – противопол. В А – противопол. к обратной. Способы док-ва т-м: 1. От прот. А В" А. 2. Метод приведения к абсурду. А В (С С). 3. Правило силлогизма. Надо найти такое С, чтобы (А С) (С В) – выполн.
|
||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 318; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.98.244 (0.006 с.) |