Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Нейр. Сети. Одн. Перцептр. Актив. Ф-ия. Лог. Операц. На основе прст. Перцептр.Содержание книги
Поиск на нашем сайте
Нейронные сети представляют собой упрощенную модель человеческого мозга. Мозг состоит из нейронов, которые яв-ся индивидуальными процессорами. Нейроны соединяются друг с другом с помощью нервных окончаний двух типов: синапсов, через которые в ядро поступают сигналы, и аксонов, через которые нейрон передает сигнал далее. Человеческий мозг состоит примерно из 1011 нейронов. Каждый нейрон связан примерно с 1000 других нейронов (это не относится к коре головного мозга, где плотность нейронных связей намного выше). Однослойный перцептрон представляет собой концептуальную модель, которая состоит из одного процессора. Каждое соединение от входа к ядру включает коэффициент, который показывает фактор веса и обозначается с помощью веса Wi который определяет влияние ячейки Ui на другую ячейку. Положительные веса показывают усиление, а отрицательные запрещение. Совместно с входами в ячейку они определяют поведение сети. Схема однослойного перцептрона представлена на рис. Ячейка включает три входа (u1, u2 и u3). Кроме этого, есть вход смещения (W0), о котором будет рассказано позже. Каждое входное соединение имеет вес (w1, w2 и w3 ). Наконец, существует единый выход, О. Состояние нейрона обозначено как Y и определяется уравнением. Y = w0 + u1*w1 + u2*w2 + u3*w3 Выражение, показанное в уравнении, яв-ся функцией, которая суммирует сигналы на всех входах с учетом веса, а затем добавляет смещение. Затем результат передается в активационную функцию, которая может быть определена так, как показано в уравнении (в данном случае функция яв-ся пороговой). y = -1, если (y<=0) (5.2) y = 1, если (y> 0) Если значение состояния больше нуля, то выходное значение будет равно 1. Иначе оно составит -1. Хотя однослойный перцептрон яв-ся очень простой моделью, ее возможности весьма велики. Например, можно легко сконструировать базовые логические функции.
функция И имеет значение 1, если оба входа равны 1, в противном случае функция возвращает значение 0. Поэтому если заданы оба входа (вектор u = (1,1)), то, используя активационную функцию в качестве порога, получим следующий результат: Y = смещение + u1*w1, + u2*w2 или 1 = nopoг(-1+(1*l)+(l*1)). Теперь попробуем подставить вектор и = (0,1): Y = смещение + u1*w1, + u2*w2 или 1 = порог(-1 + (0*1)+(1*1)).
Как показывают оба примера, модель простого перцептрона правильно реализует логическую функцию И (а также функции ИЛИ и НЕ). Приближенное решение уравнений. Методы бисекции, хорд, касательных, комбинированный, итераций. Погрешность методов. Приближённое решение дифференциальных уравнений, получение аналитических выражений (формул) или численных значений, приближающих с той или иной степенью точности искомое частное решение дифференциального уравнения. Метод бисекций. Пусть дано ур-ие f(x)=0 где f(x)-непрерывно на некотором конеч или бесконеч интерв. Конем этого ур. Назовем " число обращ-е f(x) в 0, если f(x0)=f /(x0)=…fk-1(x0)=0, то x0 корень кратности к точно решить данное ур-ие не всегда удается, будем гов-ть, что x—есть приближенное решение ур-ия с точн-ю e если |a-x––| <=e,где а точный корень –e<= a-x––<=e или a-e<=x––<=a+e.Задача о нахожд приближ корня обычно реш-ся в 2 этапа 1) отдел-ся корень т.е. ищется по возм-ти небольш отр-ок [a, b] содерж ровно один корень. 2) корень уточн-ся до нужной точности. 1) а) отделение корня м.о. пр-ти графически. б) если график сложен, то ур-е мо переписать в виде g(x) =f(x) (и построить гр-ки y=g(x), y=f(x) и точка пересеч б.т. корень). в) мо для отделен корня исп-ть. теор. Т.если непрерыв ф-я на концах отр приним-ет значен разных знаков, то на отр-ке она имеет по кр-не. мере один корень. Если ф-я монотонна, то кор-нь один. Пусть изв-но, что корни Ур-я нах-ся на конц отр-ка [a,b]разделим отрезок на равные части точками a=a0<a1<…<an=b и проверим знаки на концах отр-ка [ai,ai+1] i=0,n-1 если условие теор вып-ся отр-к содерж корень, алгор-м метода м.б. следующим а,в концы отрезка, n-кол-во отр-ов деления.
2) одним из простейших способов уточнения корня явл-ся метод бисекции сост-ий в следующем: пусть на отр. [a,b] yf[-cz ровно 1 корень уровн. Найдем корень с точн-ю e. Разделим отр. Пополам. Точкой x1 =(a+b)/2, половину содерж корень вновь делим пополам итд. Процесс прекращ, когда длина отр-ка не станет <=2e тогда за приближ значение корня x–– возьмем середину этого отр-ка. Алгоритм следующий.
Теорема явл-ся достаточной но не обязат для сходимости. Геометрич смысл метода итераций.
Алгоритм имеет вид Методами хорд и касс-ых. М-д хорд.
Пусть корень Ур-ния f(x)=0, [a,b] допустим, что на [a,b] существ. f’’(x), к-ое не мен. знак. Пусть для определ-ти f(a)<0. Пусть f’’>0 (рис.): провед. хорду АВ и найдем ее пересеч. с осью x. Пусть А1 пересечение y=f(x) и прямой x=x1, проводим хорду А1В, пусть x2 – ее пересеч. с осью x и т.д. Получ. ∞ числов. послед-ть {xn}. Для нахожд. xi используем Ур-ние прямой, прох. ч/з 2 точки: найдем:
В послед-сти xn: a=x0<x1<…<xn<…<b т.е. посл-ть xn имеет предел, как возрост-ая и ограниченная сверху, т.е. перейдя к пределу: т.е.с-кор-нь М-д касательных. Пусть корень ур-ния f(x)=0 отделен на отрез. [a,b], причем f’’ не меняет знака на [a,b]. Возьмем для опред-сти f(a)<a, f’’>0
Провед. касат. к тому концу дуги АВ в к-ром f*f’’>0. Пусть x1 ее пересеч. с Ox обозначим ч/з b1 пересеч. прямой x=x1 и дуги АВ. Провед. касат. в т.В1 пусть x2 ее пересеч. с Ox и т.д. Получ. ∞ послед-ть {xn} имеющую предел как убывающая и огранич. xn – б/м искать из ур-ния касат. Ищем x1: y-f(b)=f’(b)(x-b), полагая y=0 x=x1 анал-но …
т.к. то переходя к пределу, получим: т.е. с – корень На практике для получ. корня с точн. ε заканчив. вычисл., когда Методические погрешности — погрешности, обусловленные несовершенством метода, а также упрощениями, положенными в основу методики.
|
|||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-06-26; просмотров: 293; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.252.187 (0.011 с.) |