Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Логические операции с понятиями. Операции над классами (объемами понятий)↑ Стр 1 из 8Следующая ⇒ Содержание книги
Поиск на нашем сайте
Из двух и более классов с помощью определенных операций можно образовать новый класс. Основными операциями над классами являются объединение классов (сложение), пересечение классов (умножение), образование дополнения к классу (отрицание) и вычитание класса (разность). При рассмотрении операций над классами вводятся следующие обозначения: А, В, С… - произвольные классы; 1 – универсальный класс; 0 – пустой класс; – знак объединения классов (сложения); ∩ - знак пересечения классов (умножения); А´ (не А) – дополнение к классу А. Операции над классами иллюстрируются круговыми схемами, универсальный класс обозначается прямоугольником. Объединением классов называется логическая операция, в результате которой образуется новый класс, состоящий из таких объектов, каждый из которых является элементом, по крайней мере, одного из слагаемых классов. Полученный в результате сложения класс А В называется суммой. А – класс депутатов Государственной Думы. В – класс юристов. А В – класс, содержащий всех депутатов Госдумы и всех юристов.
Пересечение классов (умножение) – логическая операция, в результате которой образуется новый класс, состоящий из общих умножаемым классам элементов. Класс А ∩ В, полученный в результате умножения, называется произведением. Например, произведением классов «студент» (А) и «шахматист» (В) является новый класс «студент-шахматист». При умножении множеств, находящихся в отношении несовместимости, получается нулевой класс. Например, умножение классов «гуси» и «утки» дает пустое множество, так как нет таких объектов, которые одновременно были бы и гусями и утками. Вычитание классов – логическая операция, в результате которой образуется новый класс, состоящий из элементов уменьшаемого класса, не принадлежащих вычитаемому классу. А-В А – класс «химический элемент» В – класс «металл» В результате вычитания получается класс, состоящий из химических элементов, не являющихся металлами. Образование дополнения к классу (отрицание) – логическая операция, состоящая в образовании нового класса, не А (А´) который состоит из элементов универсального класса, не принадлежащих дополняемому классу А. Универсальный класс символически обозначается 1; графически – прямоугольником. Чтобы образовать дополнение, нужно класс А исключить из универсального класса: 1-А=А´. Например, чтобы образовать дополнение к классу «студент», надо подвергнуть этот класс отрицанию. Полученный класс «не-студент» является дополнением к классу «студент». Класс студентов, сложенный с классом «не-студентов», образует универсальный класс учащихся.
Основные законы логики классов Операции над классами подчиняются определенным законам. Обоснование отдельных законов производится с помощью круговых схем; при этом каждому классу на круговой схеме соответствует определенная плоскость. Результат операции, выполняемой в первую очередь, на схемах заштриховывается горизонтальной линией, последующие – вертикальной. Законы сложения и умножения 1. Закон идемпотентности (подобия) – класс, сложенный сам с собою, или умноженный на себя, равен самому себе. A A=A А ∩ А=А 2. Закон коммутативности – результат сложения и умножения не зависит от того, в каком порядке берутся эти классы. A В= В A А ∩ В= В ∩ А 3. Закон ассоциативности – результат сложения и умножения более чем двух классов не зависит от порядка выполнения действий. A (В С)= (А В) С А ∩ (В ∩ С)= (А ∩ В) ∩ С. 4а. Закон элиминации (поглощения) для сложения относительно умножения – сумма какого-либо класса и произведения двух классов, одним из сомножителей которого является этот класс, равна этому классу. A (А ∩ В) = А
= А
4б. Закон элиминации для умножения относительно сложения – произведение какого-либо класса и суммы двух других классов, одним из слагаемых которой является этот класс, равно умножаемому классу. А ∩ (А В) = А.
= А
5а. Закон дистрибутивности умножения относительно сложения. А ∩ (В С) = (А ∩ В) (А ∩ С).
=
5б. Закон дистрибутивности сложения относительно умножения A (B ∩ C) = (A B) ∩ (A C)
=
Законы дополнения Законы дополнения вытекают из свойств противоречащих понятий, каковыми являются дополнение и дополняемое понятие. 1. Сумма класса и его дополнения равна универсальному классу А A' = 1. 2. Сумма дополняемого класса и универсума равна универсальному классу А 1=1. 3. Произведение дополняемого класса и универсума равно дополняемому классу А ∩ 1 = А. 4. Произведение класса и его дополнение является пустым классом А ∩ A' = 0. 5. Дополнением универсума является пустой класс 1' = 0. 6. Дополнением дополнения является дополняемый класс (A') ' = A.
|
||||||||||
Последнее изменение этой страницы: 2016-06-23; просмотров: 198; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.12.233 (0.005 с.) |