Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Проблемы оптимизации запросовСодержание книги
Поиск на нашем сайте
Как обычно, основной целью оптимизации запроса в системе ООБД является создание оптимального плана выполнения запроса с использованием примитивов доступа к внешней памяти ООБД. Оптимизация запросов хорошо исследована и разработана в контексте реляционных БД. Известны методы синтаксической и семантической оптимизации на уровне непроцедурного представления запроса, алгоритмы выполнения элементарных реляционных операций, методы оценок стоимости планов запросов. Конечно, объекты могут иметь существенно более сложную структуру, чем кортежи плоских отношений, но не это различие является наиболее важным. Основная сложность оптимизации запросов к ООБД следует из того, что в этом случае условия выборки формулируются в терминах "внешних" атрибутов объектов (методов), а для реальной оптимизации (т.е. для выработки оптимального плана) требуются условия, определенные на "внутренних" атрибутах (переменных состояния). На самом деле похожая ситуация существует и в РСУБД при оптимизации запроса над представлением БД. В этом случае условия также формулируются в терминах внешних атрибутов (атрибутов представления), и в целях оптимизации запроса эти условия должны быть преобразованы в условия, определенные на атрибутах хранимых отношений. Хорошо известным методом такой "предоптимизации" является подстановка представлений, которая часто (хотя и не всегда в случае использования языка SQL) обеспечивает требуемые преобразования. Альтернативным способом выполнения запроса над представлением (иногда единственным возможным) является материализация представления. В системах ООБД ситуация существенно усложняется двумя обстоятельствами. Во-первых, методы обычно программируются на некотором процедурном языке программирования и могут иметь параметры. Т.е. в общем случае тело метода представляет из себя не просто арифметическое выражение, как в случае определения атрибутов представления, а параметризованную программу, включающую ветвления, вызовы функций и методов других объектов. Вторая сложность связана с возможным и распространенным в ООП поздним связыванием: точная реализация метода и даже структура объекта может быть неизвестна во время компиляции запроса. Одним из подходов к упрощению проблемы является открытие видимости некоторых (наиболее важных для оптимизации) внутренних атрибутов объектов. В этом контексте достаточно было бы открыть видимость только для компилятора запросов, т.е. фактически запретить переопределять такие переменные в подклассах. С точки зрения пользователя такие атрибуты выглядели бы как методы без параметров, возвращающие значение соответствующего типа. С нашей точки зрения лучше было бы сохранить строгую инкапсуляцию объектов (чтобы избавить приложение от критической зависимости от реализации) и обеспечить возможности тщательного проектирования схемы ООБД с учетом потребностей оптимизации запросов. Общий подход к предоптимизации условия выборки для одного (супер)класса объектов может быть следующим (мы предполагаем, что условия формулируются с использованием логики предикатов первого порядка без кванторов; в предикатах могут использоваться методы соответствующего класса, константы и операции сравнения): Шаг А: Преобразовать логическую формулу условия к конъюнктивной нормальной форме (КНФ). Мы не останавливаемся на способе выбора конкретной КНФ, но естественно, должна быть выбрана "хорошая" КНФ (например, содержащая максимальное число атомарных конъюнктов). Шаг B: Для каждого конъюнкта, включающего методы с известным во время компиляции телом, заменить вызовы методов на их тела с подставленными параметрами. (Для простоты будем предполагать, что параметры не содержат вызовов функций или методов других объектов.) Шаг C: Для каждого такого конъюнкта произвести все возможные упрощения, т.е. вычислить все, что можно вычислить в статике. Хотя в общем виде эта задача является очень сложной, при разумном проектировании ООБД в число методов должны будут войти методы с предельно простой реализацией, задавать условия на которых будет очень естественно. Такие условия будут упрощаться очень эффективно. Шаг D: Если теперь появились конъюнкты, представляющие собой простые предикаты сравнения на основе переменных состояния и констант, использовать эти конъюнкты для выработки оптимального плана выполнения запроса. Если же такие конъюнкты получить не удалось, единственным способом "отфильтровать" (супер)класс объектов является его последовательный просмотр с полным вычислением (возможно упрощенного) логического выражения для каждого объекта. Понятно, что возможности оптимизации будут зависеть от особенностей языка программирования, который используется для программирования методов, от особенностей конкретного языка запросов и от того, насколько продуманно спроектирована схема ООБД. В частности, желательно, чтобы используемый язык программирования стимулировал максимально дисциплинированный стиль программирования методов объектов. Язык запросов должен разумно ограничивать возможности пользователей (в частности, в отношении параметров методов, участвующих в условиях запросов). Наконец, в классах схемы ООБД должны содержаться простые методы, не переопределяемые в подклассах и основанные на тех переменных состояния, которые служат основой для организации методов доступа. Заметим, что указанные ограничения не влекут зависимости прикладной программы от особенностей реализации ООБД, поскольку объекты остаются полностью инкапсулированными. Использование в условиях запросов простых методов должно стимулироваться не требованиями реализации, а семантикой объектов. Примеры объектно-ориентированных СУБД В настоящее время ведется очень много экспериментальных и производственных работ в области объектно-ориентированных СУБД. Больше всего университетских работ, которые в основном носят исследовательский характер. Но уже несколько лет назад отмечалось существование по меньшей мере тринадцати коммерчески доступных систем ООБД. Среди них уже упоминавшиеся в нашем обзоре системы O2, ORION, GemStone и Iris. Рассмотрим особенности организации двух из них - ORION и O2. Проект ORION Проект ORION осуществлялся с 1985 по 1989 г. фирмой MCC под руководством известного еще по работам в проекте System R Вона Кима. Под названием ORION на самом деле скрывается семейство трех СУБД: ORION-1 - однопользовательская система; ORION-1SX, предназначенная для использования в качестве сервера в локальной сети рабочих станций; ORION-2 - полностью распределенная объектно-ориентированная СУБД. Реализация всех систем производилась с использованием языка Common Lisp на рабочих станциях (и их локальных сетях) Symbolics 3600 с ОС Genera 7.0 и SUN-3 в среде ОС UNIX. Основными функциональными компонентами системы являются подсистемы управления памятью, объектами и транзакциями. В ORION-1 все компоненты, естественно, располагаются на одной рабочей станции; в ORION-1SX - разнесены между разными рабочими станциями (в частности, управление объектами производится на рабочей станции-клиенте). Применение в ORION-1SX для взаимодействия клиент-сервер механизма удаленного вызова процедур позволило использовать в этой системе практически без переделки многие модули ORION-1. Сетевые взаимодействия основывались на стандартных средствах операционных систем. В число функций подсистемы управления памятью входит распределение внешней памяти, перемещение страниц из буферов оперативной памяти во внешнюю память и наоборот, поиск и размещение объектов в буферах оперативной памяти (как принято в объектно-ориентированных системах, поддерживаются два представления объектов - дисковое и в оперативной памяти; при перемещении объекта из буфера страниц в буфер объектов и обратно представление объекта изменяется). Кроме того, эта подсистема ответственна за поддержание вспомогательных индексных структур, предназначенных для ускорения выполнения запросов. Подсистема управления объектами включает подкомпоненты обработки запросов, управления схемой и версиями объектов. Версии поддерживаются только для объектов, при создании которых такая необходимость была явно указана. Для схемы БД версии не поддерживаются; при изменении схемы отслеживается влияние этого изменения на другие компоненты схемы и на существующие объекты. При обработке запросов используется техника оптимизации, аналогичная применяемой в реляционных системах (т.е. формируется набор возможных планов выполнения запроса, оценивается стоимость каждого из них и выбирается для выполнения наиболее дешевый). Подсистема управления транзакциями обеспечивает традиционную сериализуемость транзакций, а также поддерживает средства журнализации изменений и восстановления БД после сбоев. Для сериализации транзакций применяется разновидность двухфазного протокола синхронизационных захватов с различной степенью гранулированности. Конечно, при синхронизации учитывается специфика ООБД, в частности, наличие иерархии классов. Журнал изменений обеспечивает откаты индивидуальных транзакций и восстановление БД после мягких сбоев (архивные копии БД для восстановления после поломки дисков не поддерживаются). Проект O2 Проект O2 выполнялся французской компанией Altair, образованной специально для целей проектирования и реализации объектно-ориентированной СУБД. Начало проекта датируется сентябрем 1986 г., и он был рассчитан на пять лет: три года на прототипирование и два года на разработку промышленного образца. После успешного завершения проекта для сопровождения системы и ее дальнейшего развития была организована новая чисто коммерческая компания O2. Прототип системы функционировал в режиме клиент/сервер в локальной сети рабочих станций SUN c соответствующим разделением функций между сервером и клиентами. Основными компонентами системы (не считая развитого набора интерфейсных средств) являются интерпретатор запросов и подсистемы управления схемой, объектами и дисками. Управление дисками, т.е. поддержание базовой среды постоянного хранения обеспечивает система WiSS, которую разработчики O2 перенесли в окружение ОС UNIX. Наибольшую функциональную нагрузку несет компонент управления объектами. В число функций этой подсистемы входят:
Несколько слов про управление транзакциями. Различаются режимы, когда допускается параллельное выполнение транзакций, изменяющих схему БД, и когда параллельно выполняются только транзакции, изменяющие внутренность БД. Первый режим обычно используется на стадии разработки БД, второй - на стадии выполнения приложений. Средства восстановления БД после сбоев и откатов транзакций также могут включаться и выключаться. Наконец, поддерживается режим, при котором все постоянно хранимые объекты загружаются в оперативную память при начале транзакции для увеличения скорости работы прикладной системы. Компонент управления схемой БД реализован над подсистемой управления объектами: в системе поддерживаются несколько невидимых для программистов классов и в том числе классы "Class" и "Method", экземплярами которых являются, соответственно, объекты, определяющие классы, и объекты, определяющие методы. (Как видно, ситуация напоминает реляционные системы, в которых тоже обычно поддерживаются служебные отношения-каталоги, описывающие схему БД.) Удаление класса, который не является листом иерархии классов или используется в другом классе или сигнатуре какого-либо метода, запрещено. Даже приведенное краткое описание особенностей двух объектно-ориентированных СУБД показывает прагматичность современного подхода к организации таких систем. Их разработчики не стремятся к полному соблюдению чистоты объектно-ориентированного подхода и применяют наиболее простые решения проблем. Пока в сообществе разработчиков объектно-ориентированных систем БД не видно работы, которая могла бы сыграть в этом направлении роль, аналогичную роли System R по отношению к реляционным системам. Правда и проблемы ООБД гораздо более сложны, чем решаемые в реляционных системах.
|
||||
Последнее изменение этой страницы: 2016-06-06; просмотров: 274; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.71.175 (0.008 с.) |