![]()
Заглавная страница
Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Закон распределения функции двух СВ.
Задача определения закона распределения функции нескольких случайных аргументов значительно сложнее аналогичной задачи для функции одного аргумента. Имеется система двух непрерывных СВ (X, Y) с плотностью распределения f(x, y). Случайная величина Z связана с X и Y функцианальной зависимостью: Z = φ(X, Y). Требуется найти закон распределения величины Z. Функция z = φ(x, y) изображается поверхностью, а не кривой, как в случае одного аргумента. Найдем функцию распределения величины Z: G(z) = P(Z<z) = P(φ(X, Y)<z) – формула (1). Проведем плоскость Q, параллельную плоскости xOy, на расстоянии z от нее. Эта плоскость пересечет поверхность z = φ(x, y) по некоторой кривой K. Спроектируем кривую К на плоскость xOy. Эта проекция, уравнение которой φ(x, y) = z, разделит плоскость xOy на две области; для одной из них высота поверхности над плоскостью xOy будет меньше, а для другой – больше z. Обозначим D ту область, для которой эта высота меньше z. Чтобы выполнялось неравенство (1), случайная точка (X, Y), очевидно, должна попасть в область D; следовательно, G(z) = P((X,Y)
41. Понятие закона больших чисел. Содержание закона больших чисел в широком смысле: при очень большом числе случайных явлений средний их рез-т практически перестает быть случайным и может быть предсказан с большой степенью определенности. В узком смысле слова под законом больших чисел в теории вероятностей понимается ряд математических теорем, в каждой из которых для тех или иных условий устанавливается факт приближения средних характеристик большого числа опытов к некоторым определенным постоянным. Простейшей из этих теорем является теорема Бернулли. Она утверждает, что при большом числе опытов частота события приближается (точнее – сходится по вероятности) к вероятности этого события. Другие, более общие формулировки, устанавливабт факт и условия сходимости по вероятности тех или иных СВ к постоянным, не случайным величинам. Закон больших чисел играет важную роль в практических применениях теории вероятности. Св-во случайных величин при определенных условиях вести себя практически как не случайные позволяет уверенно оперировать с этими величинами, предсказывать рез-ты массовых случайных явлений (это большое число выполняемых однородных опытов или большое число складывающихся случайных воздействий, порождающих в своей совокупности случайную величину, подчиненную вполне определенному закону) почти с полной опреленностью.
Неравенство Чебышева. Нер-во Чебышева относится к группе «закона больших чисел». Пусть имеется СВ Х с мат. ожиданием mx и Dx. Нер-во Чебышева утверждает, что, каково бы ни было положительное число α, вероятность того, что величина Х отклонится от своего мат. ожидания не меньше чем на α, ограничена сверху величиной Dx/ α2: P(|X - mx |≥α)≤ Dx/ α2. Доказ-во: Пусть величина Х прерывная, с рядом распределения:
Изобразим возможные значения величины Х и ее мат. ожидание mx в виде точек на числовой оси Ox. Зададим некоторым значением α>0 и вычислим вероятность того, что величина Х отклонится от своего мат. ожидания не меньше, чем на α: P(|X - mx |≥α) – формула (1). Для этого отложим от точки mx вправо и влево по отрезку длиной α; получим отрезок АВ. Вероятность (1) есть не что иное, как вероятность того, что случайная точка Х попадет не внутрь отрезка АВ, а вовне его: P(|X - mx |≥α) = P(X
|
||||||||||||
Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.234.247.75 (0.004 с.) |