Теломери та роль теломерази у підтриманні мітотичної активності клітин. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теломери та роль теломерази у підтриманні мітотичної активності клітин.



Кінцеві ділянки ДНК еукаріотичної хромосоми - теломери - складаються з невеликих елементів послідовності, що тандемно повторюються - теломерних повторів. Подовження теломер після реплікації здійснюється за допомогою спеціального ферменту -теломерази, яка є РНК-залежною ДНК полімеразою. Основна роль теломер — буфер ДНК. Щоразу, коли лінійні хромосоми подвоюються протягом пізньої S-фази, ДНК-полімераза нездібна до реплікації кінця хромосоми. Якщо б не теломери, це швидко приводило б до втрати важливої генетичної інформації, яка потрібна для нормального функціювання клітини. Щоразу, коли клітина з лінійними хромосомами ділиться, вона втрачає маленький шматок ДНК (50-100 пар основ) на кінці своїх хромосом. Тоді як у деяких клітинах (стовбурових, генеративних) цей шматок теломер відновлюється за допомогою теломерази (у деяких організмів також іншого механізму, ALT), у більшості клітин теломераза неактивна і хромосома скорочується. Перші дослідники цього процесу, Джеймс Ватсон і Олексій Оловніков, назвали його «проблемою реплікації кінців» (англ. end replication problem). Скорочення теломер є причиною межі Гейфліка поділу соматичних клітин, важливої для подолання раку і що, як вважається, грає роль у процесі старіння. Крім того, при розривах хромосом (наприклад, під дією іонізуючого випромінювання) окремі фрагменти ДНК можуть знов возз'єднатися, але ніколи не з'єднуються по теломерах. Таким чином, теломери допомогають правильному приєднанню ділянок хромосом у процесі репарації ДНК.Подовження теломер після реплікації здійснюється за допомогою спеціального ферменту - теломерази, яка є РНК-залежною ДНК-полімеразою. РНК-матриця входить до складу самого ферменту і містить ділянку, комплементарну теломерному повтору. Використовуючи цю ділянку як матрицю і 3’-кінець як праймер, теломераза покроково добудовує до 3’-кінця кілька копійтеломеразного повтору. Далі подовжений одноланцюговий хвіст використовується як матриця для синтезу іншого ланцюга за звичайним реплікативним механізмом. Видалення РНК-праймера після цього не є проблемою, оскільки хромосома вже є подовженою. Теломераза є активною в клітинах, що розвиваються, і злоякісно трансформованих клітинах і неактивною - у диференційованих соматичних клітинах вищих еукаріотів. Відповідно, певне критичне скорочення теломерів, яке відбувається в таких клітинах після кількох десятків клітинних поділів, є одним із механізмів активації програми їхньої загибелі.

 

55.Природа та роль гормонів та медіаторів у інтегративній діяльності клітин багатоклітинногоорганізму.
Гормони
— фізіологічно активні сполуки (ФАС), біорегулятори, що продукуються залозами внутрішньої секреції (ендокринними залозами) або іншими спеціалізованими клітинами і діють як регулятори метаболічних процесів та фізіологічних функцій в організмі. Біологічні ефекти гормонів здійснюються в надзвичайно низьких концентраціях — 10-11-10-6 моль/л. Використовуються в організмі для підтримки його гомеостазу, а також для регуляції багатьох функцій (росту, розвитку, обміну речовин, реакції на зміни умов середовища). Коли гормон, що знаходиться в крові, досягає клітини-мішені, він вступає у взаємодію із специфічними рецепторами; рецептори «прочитують послання» організму, і в клітині починають відбуватися певні зміни. Кожному конкретному гормону відповідають виключно «свої» рецептори, що знаходяться в конкретних органах і тканинах, — тільки при взаємодії гормону з ними утворюється гормон-рецепторний комплекс.

 

Механізми дії гормонів можуть бути різними. Одну з груп складають гормони, які з'єднуються з рецепторами, що знаходяться усередині клітин, — як правило, у цитоплазмі. До них належать гормони з ліпофільними властивостями — наприклад, стероїдні гормони (статеві гормони, глюко- і мінералокортикоїди), а також гормони щитовидної залози. Будучи жиророзчинними, ці гормони легко проникають через клітинну мембрану і починають взаємодіяти з рецепторами у цитоплазмі, або ядрі. Вони слабо розчинні у воді, при транспортуванні по крові зв'язуються з білками-носіями.Вважається, що в цій групі гормонів гормон-рецепторний комплекс виконує роль своєрідного внутрішньоклітинного реле — утворившись в клітині, він починає взаємодіяти з хроматином, який знаходиться в клітинних ядрах і складається з ДНК і білка, і тим самим прискорює або сповільнює роботу тих, або інших генів. Вибірково впливаючи на конкретний ген, гормон змінює концентрацію відповідною РНК і білка, і разом з тим коректує процеси метаболізму.

 

Біологічний результат дії кожного гормону вельми специфічний. Хоча у клітині-мішені гормони змінюють зазвичай менше 1% білків і РНК, цього виявляється цілком достатньо для отримання відповідного фізіологічного ефекту.

 

Більшість інших гормонів характеризуються трьома особливостями:

-вони розчиняються у воді;

-не зв'язуються з білками носіями;

-починають гормональний процес, як тільки з'єднуються з рецептором, який може знаходитися в ядрі клітки, її цитоплазмі, або розташовуватися на поверхні плазматичної мембрани.

 

У механізмі дії гормон-рецепторного комплексу таких гормонів обов'язково беруть участь посередники, які індукують відповідь клітини. Найважливіші з таких посередників — цАМФ(циклічний аденозинмонофосфат), інозитолтрифосфат, іони кальцію.

 

Так, в середовищі, позбавленому іонів кальцію, або в клітках з недостатньою їх кількістю, дія багатьох гормонів послаблюється; при застосуванні речовин, що збільшують внутрішньоклітинну концентрацію кальцію, виникають ефекти, ідентичні до дії деяких гормонів. Участь іонів кальцію, як посередника забезпечує вплив на клітини таких гормонів, як вазопресин і катехоламіни.

 

Проте є гормони, внутрішньоклітинного посередника яких дотепер не виявлено. З найвідоміших таких гормонів можна назвати інсулін, у якого на роль посередника пропонували цАМФ і цГМФ, а також іони кальцію і навіть перекис водню, але переконливих доказів на користь якої-небудь однієї речовини немає. Багато дослідників вважають, що у такому разі посередниками можуть виступати хімічні з'єднання, структура яких повністю відрізняється від структури вже відомих науці посередників.

 

Виконавши своє завдання, гормони або розщеплюються в клітинах-мішенях, або в крові, або транспортуються до печінки, де розщеплюються, або, нарешті, видаляються з організму в основному з сечею (наприклад, адреналін).

МЕДІАТОРИ (лат. mediator — посередник) — БАР ендогенного походження, що здійснюють передавання нервового імпульсу між окремими нервовими клітинами або між кінцями відцентрових нервів та клітинами еферентних (периферичних) органів. Передавання імпульсів (збуджувальних або гальмівних) від однієї нервової клітини до іншої або від нейронів до клітин робочих органів здійснюється за допомогою синапсів (грец. synapsis — сполучення, зв’язок). У синапсі передавання імпульсу здійснюється М. (посередниками) — речовинами, що виділяються в дуже незначній кількості нервовими закінченнями. Мембрани сприймальних клітин мають високу чутливість до М. Останні зумовлюють їх збудження або гальмування залежно від властивостей М. і клітин. Після виконання своїх функцій М. руйнуються спеціальними ферментами, їх дія припиняється. Нині найбільше вивчені М. ацетилхолін і адреналін. У медичній практиці застосовують М., за допомогою яких може бути посилене або послаблене передавання нервових імпульсів, що, у свою чергу, стимулює або пригнічує функцію того чи іншого органа.

 

№ 56 Молекулярні основи мейозу.

Загальна характеристика мейозу.
Мейоз
(редукційний поділ) веде до утворення клітин з гаплоїдним набором хромосом (від грец. meiosis — зменшення); поділ, при якому наполовину зменшується (редукується) кількість хромосом (з диплоїдного до гаплоїдного набору).
Три важливі явища мейозу: (1) редукція числа хромосом до гаплоїдного (половинного) набору; (2) комбінування (рекомбінація) батьківських і материнських хромосом; (3) кросинговер — перехрест хромосом, при якому відбувається взаємний обмін між частинами хромонем і хромосом внаслідок розривів хроматид і поєднання кінців в іншому порядку.
Три форми мейозу: (1) початковий (зиготний) настає після запліднення (у водоростей і найпростіших), коли лише зигота диплоїдна, а її похідні гаплоїдні; (2) проміжний (споровий) — між стадіями спорофіту і гаметофіту (в процесі спороутворення в рослин); (3) кінцевий (гаметний) — при гаметогенезі (розвитку статевих клітин) у всіх багатоклітинних тварин і деяких найпростіших.
На вступі доцільно ще раз відзначити, що в незрілих статевих (так як і в соматичних) клітинах є диплоїдні набори (46) хромосом, тобто по два екземпляри кожної хромосоми, з яких один набір батьківського (від сперматозоїда) і один материнського (від яйцеклітини) походження. Ці хромосоми складають гомологічні пари, в яких партнери мають однакову довжину і однакове розміщення центромер, містять однакову кількість генів з аналогічною послідовністю.
Мейоз включає два поділи та інтерфазу між ними. Перший поділ гетеротипний (від грец. heteros — інший), або редукційний (від лат. reductio — повернення, відновлення) значно відрізняється від мітозу. Другий поділ екваційний (від лат. ecqualis — такий же), або гомеотипний (від грец. homoios — подібний) проходить як мітоз, і відрізняється від нього лише за кількістю хромосом. Для інтерфази між цими двома поділами характерним є те, що в ній не відбувається реплікація ДНК (редуплікація хромосом).
Перший поділ мейозу має такі ж стадії як і мітоз, лише додається відповідне цифрове позначення: профаза–І, метафаза–І, анафаза–І, телофаза–І.
Другий поділ мейозу позначається відповідно: профаза–ІІ, метафаза–ІІ, анафаза–ІІ, телофаза–ІІ.
Кожний з двох поділів мейозу має свої відмінності. Особливість першого поділу полягає в незвичайному і складному проходженні профази–І. Найважливішою відмінністю профази–І мейозу від профази мітозу є кон’югація гомологічних хромосом з утворенням бівалентів. Кон’югація — це прикладання відповідних ділянок гомологічних хромосом таким чином, що із 46 d-хромосом людини утворюється 23 біваленти.
Більш детально перебіг мейозу прийнято описувати на прикладі гаметогенезу (спермато- і овогенезу), коли відбувається процес дозрівання статевих клітин.

Загальна характеристика гаметогенезу

Гаметогенез — розвиток статевих клітин — гамет — чоловічих (сперматозоїдів) і жіночих (яйцеклітин) відбувається в статевих залозах: сперматогенез — у чоловічих статевих залозах (сім’яниках, яєчках), овогенез — у жіночих статевих залозах (яєчниках).
Гаметогенез проходить такі стадії: розмноження, росту, дозрівання статевих клітин, а сперматогенез проходить ще окрему четверту стадію — формування (рис. 2.37). Мейоз відбувається в період дозрівання статевих клітин. Вступає в перший поділ мейозу гаметоцит (спермато- чи овоцит) першого порядку, клітина, яка має диплоїдний набір (у людини 46) d-хромосом. У результаті двох поділів дозрівання (мейозу) утворюються клітини з гаплоїдним набором хромосом (у людини 23 s-хромосоми). У чоловіків на стадії формування зріла статева клітина набуває остаточної форми — сперматозоїда — з головкою і хвостом. Формування жіночої статевої клітини (оотиди) відбувається одночасно з ростом і дозріванням і полягає в нагромадженні жовтка і утворенні оболонки яйцеклітини.

Біологічне значення мейозу. В організмів, які розмножуються статевим способом, внаслідок мейозу утворюються дочірні клітини з гаплоїдним числом хромосом. Під час запліднення гаплоїдні ядра статевих клітин зливаються і утворюють зиготу, яка містить властиве для певного виду число хромосом. Отже, мейоз і запліднення є взаємокомпенсаторними процесами, які забезпечують постійність числа хромосом у безперервному ряді поколінь.
На відміну від мітозу, мейоз у гетерозиготних організмів приводить до виникнення статевих клітин з різною генетичною інформацією. Природним доказом цього можуть бути двояйцеві близнята або діти одних і тих самих батьків. Так, унаслідок генетичної нерівноцінності продуктів мейозу сіянці певного сорту яблуні, наприклад Джонатану, не відтворюватимуть комплексу ознак цього сорту і будуть різноманітними.
Поведінка хромосом у мейозі, зокрема належний розподіл їх і кросинговер, має глибокі генетичні й еволюційні наслідки. Завдяки мейозу і заплідненню природні популяції диплоїдних організмів складаються з генетично різних особин.
Процес мейозу знаходиться під генетичним контролем і разом з тим залежить від умов. У різних організмів виявлені мутації генів, які супроводжуються блокуванням початку мейозу, злипанням хромосом, порушенням їх кон’югації і розходження тощо. Природні мутагенні фактори також порушують кон’югацію, викликають структурні зміни хромосом і генів, призводять до неправильного розходження хромосом, виникнення нередукованих (2n) ядер і ядер із зміненим каріотипом. Структурні зміни хромосом успадковуються кінцевими продуктами мейозу і передаються зиготі.

№ 57Джерела генетичної мінливості.

Генотипна мінливість складається з мутаційної та комбінативної.
Комбінативна мінливість – важливе джерело великого спадкового різноманіття, що спостерігається у живих організмів. В її основі лежить статеве розмноження організмів, внаслідок якого виникає велика різноманітність генотипів.

Джерелами комбінативної мінливості є: кон'югація гомологічних хромосом у профазі та їхнє незалежне розходження в анафазі першого поділу мейозу, а також випадкове поєднання алельних генів при злитті гамет. Отже, комбінативна мінливість, яка забезпечує різноманітність комбінацій алельних генів, зумовлює і появу особин із різними поєднаннями станів ознак.

Мутаційна мінливість – стійкі зміни генетичного матеріалу, які виникають раптово і призводять до змін спадкових ознак організму.
Поняття про мутації (мутатіо – зміна) Вивчав Г. де Фріз.

№ 58 Причини та наслідки порушень в структурі молекули ДНК.

ДНК може пошкоджуватись різноманітними мутагенами, до яких належать окислюючі й алкілюючі речовини, а також високоенергетична електромагнітна радіація — ультрафіолетове й рентгенівське випромінювання. Тип пошкодження ДНК залежить від типу мутагена. Наприклад, ультрафіолет пошкоджує ДНК шляхом появи в ній димерів тиміну, які утворюються при формуванні ковалентних зв'язків між сусідніми основами

Активні форми кисню, наприклад «вільні» радикали або перекис водню призводять до кількох типів пошкодження ДНК, включаючи модифікації основ, особливо гуанозину, а також дволанцюжкові розриви в ДНК. За деякими оцінками у кожній клітині людини близько 500 основ пошкоджуються окислюючими сполуками щодняСеред різних типів пошкоджень найнебезпечніші — дволанцюжкові розриви, тому що вони важко репаруються і можуть призвести до втрат ділянок хромосом (делецій) і транслокацій.

Багато молекул мутагенів вставляються (інтеркалюються) між двома сусідніми парами основ. Більшість цих сполук, наприклад, бромистий етидій, дауноміцин, доксорубіцин і талідомід, мають ароматичну структуру. Для того, щоб ароматична сполука могла вміститися між основами, вони повинні розійтися, розплітаючи й порушуючи структуру подвійної спіралі. Ці зміни в структурі ДНК перешкоджують транскрипції і реплікації, викликаючи мутації. Тому інтеркалюючі речовини часто є канцерогенами, найвідоміші з яких — бензопірен, акридини, афлатоксини і бромистий етидійПопри ці негативні властивості, в силу своєї здатності пригнічувати транскрипцію і реплікацію ДНК, деякі речовини, що інтеркалюють до ДНК, використовуються в хіміотерапії для пригнічення швидкого росту ракових клітин

 

№59 Молекулярні основи еволюції живих систем та їх відображення в геномах

ДНК, що міститься у клітині,. це не тільки гени: принаймні мають бути з’єднуючі міжгенні ділянки. Сукупність послідовностей ДНКу гаплоїдному наборі даного організму називається геномом. На сьогодні повністю розшифровані послідовності більше 600 прокаріотичних і 80 еукаріотичних геномів. Головна відмінність між ними полягає в тому, що в прокаріотичних геномах кодуючі послідовності становлять до 95 %, тоді як частка кодуючих послідовностей у геномах еукаріотів не перевищує 3 %.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 434; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.146.35.203 (0.015 с.)