Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Теория относительности для миллионов

Поиск

Мартин Гарднер

Теория относительности для миллионов

 

 

"Атомиздат"; Москва; 1967

Аннотация

 

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.

Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».

Впрочем, именно такой и должна быть популярная книга.

 

ГАРДНЕР Мартин

"ТЕОРИЯ ОТНОСИТЕЛЬНОСТИ ДЛЯ МИЛЛИОНОВ"

 

Предисловие к русскому изданию

 

 

 

Книга Гарднера — это популярное изложение специальной и общей теории относительности, действительно рассчитанное на миллионы читателей.

Увлекательно и доступно написанная, она будет понятна всем, начиная со школьников старших классов. Особо следует отметить прекрасные иллюстрации. Благодаря им книга похожа на альбом под названием «Теория относительности в картинках».

Впрочем, именно такой и должна быть популярная книга.

Большим достоинством книги является то, что автор довольно много говорит об истории возникновения теории относительности. Всегда приятно узнавать не только саму истину, но и то, каким образом она добыта, какие люди в этом участвовали, какие гипотезы высказывались. Так, например, в книге довольно много говорится о «принципе Маха». Большинство ученых уже давно от него отказались, но в свое время «принцип Маха» оказывал большое влияние на умы, и без упоминания о нем история была бы неполной.

Особо следует отметить то, что автор говорит не только об уже устоявшихся, всеми принятых положениях, но и о разных спорных вопросах, на которые сейчас еще нет ответа. Поэтому, читая книгу Гарднера, читатель видит живую, развивающуюся науку, которая влечет к себе своими загадками. Уже одно это выделяет эту книгу из многих других популярных изложений теории относительности.

Популярность изложения имеет и свою теневую сторону: Гарднеру волей-неволей приходится прибегать к упрощениям, возникает много неточностей и недомолвок. Некоторые из них имеют принципиальный характер и могут привести к неправильному пониманию сути дела.

Несколько слов об этом будет сказано после того, как вы прочтете книгу.

А. И. БАЗЬ.

 

Предисловие автора

 

О теории относительности написано столько популярных книг, что читатель может спросить: «Зачем еще одна?» Мне кажется, что еще одна нужна, и вот почему.

1. Лучшие введения в элементарную теорию относительности были написаны много лет назад и сейчас устарели. Правда, в теорию относительности не были внесены какие-либо существенные изменения, но появились новые экспериментальные данные, новое отношение к некоторым проблемам, новые космологические модели. Все это должно быть отражено в современной книге по теории относительности.

2. Лично для меня очень сильным оказалось искушение попытаться еще раз объяснить сложные и важные вопросы возможно более простым образом.

3. Ни одна популярная книга по теории относительности не была столь искусно иллюстрирована.

Блестящее мастерство Антони Равиелли выделяет эту книгу из всех остальных.

Я устоял против соблазна закончить книгу главой, посвященной философским следствиям теории относительности, так как считаю, что в общепринятом смысле слова «философский» теория относительности не имеет следствии. Теория относительности, очевидно, имеет значение для теории познания и философии науки, главным образом благодаря тому, что она демонстрирует невозможность определения математической структуры пространства — времени, иначе как из опыта. Но что касается великих традиционных вопросов философии — бог, бессмертие, свобода воли, добро и зло и т. д., — то здесь теории относительности абсолютно нечего сказать.

Абсурдно мнение, что из теории относительности следует относительность всего, например относительность ценности антропологии или относительность морали. На самом деле это не так, на самом деле теория относительности вводит целый ряд новых «абсолютов».

Иногда утверждают, будто из-за теории относительности труднее представить себе, что вне нас существует «огромный мир», обладающий упорядоченной структурой, которая частично может быть описана законами науки. «По мере развития этой дисциплины (теории относительности), — пишет английский астроном Джеймс Джинс в своей книге «Развитие физической науки», — становится ясно, что явления природы были определены скорее нами и нашим опытом, а не механической вселенной вне нас и независимо от нас».

Этот «субъективизм» или «идеализм», независимо от того, как его называют, чтобы отличить от «реализма» работающих ученых, в последние годы некоторые выдающиеся физики иочему-то связывают с теорией относительности. Это достаточно почтенная метафизическая позиция, но она не получает ни малейшей поддержки со стороны теории относительности. Сам Эйнштейн, без сомнения, не придерживался такого взгляда, в чем вы убедитесь тотчас же, прочтя цитату, которая открывает эту книгу. Я не буду обсуждать здесь этот вопрос. Если читатель им интересуется, он найдет убедительный ответ двух ведущих современных философов науки: Адольфа Грюнбаума (в статье, опубликованной в сборнике «Философия науки») и Филиппа Франка (в гл. 7 его книги «Философия науки»).

Я признателен Джону Стэчелу, профессору физики из Питтсбургского университета, который прочел рукопись книги и внес ценные поправки и предложения. Разумеется, он не может нести никакой ответственности за мои высказывания по спорным вопросам.

 

Абсолютно или относительно?

 

 

 

Два моряка, Джо и Мо, после кораблекрушения оказались на необитаемом острове. Прошло несколько лет. Однажды Джо нашел бутылку, которую выбросили на берег волны. Это была одна из новых огромных бутылок из-под «Кока-кола». Джо побледнел.

«Эй, Мо!» — крикнул он. «Мы с тобой уменьшились!»

Из этой шутки можно извлечь серьезный урок: судить о размерах любого объекта нельзя иначе, как сравнивая их с размерами чего-либо иного. Лилипуты считали Гулливера великаном. Жителям Бробдингнега Гулливер казался крошечным. Велик биллиардный шар или мал? Разумеется, он чрезвычайно велик по сравнению с атомом, но крайне мал по сравнению с Землей.

Жюль Анри Пуанкаре, известный французский математик девятнадцатого века, предвосхитивший многие положения теории относительности, подошел к этому вопросу следующим образом (ученые называют его способ подхода «мысленным экспериментом»: это эксперимент, который может быть воображен, но не может быть выполнен в действительности).

Представьте себе, говорит он, что ночью, когда вы крепко спите, все во Вселенной стало в тысячу раз больше, чем прежде. Говоря все, Пуанкаре имеет в виду действительно все: электроны, атомы, длины волн света, самих вас, вашу кровать, ваш дом. Землю, Солнце, звезды. Сможете ли вы сказать, когда проснетесь, что произошли какие-то изменения?

Можно ли провести такой эксперимент, который доказал бы, что вы изменились в размерах?

 

 

Нет, говорит Пуанкаре, такого эксперимента провести нельзя. Действительно, Вселенная оказалась бы такой же, как и прежде. Было бы бессмысленно даже говорить, что она стала больше. «Больше» — это значит больше относительно чего-то другого.

В этом случае чего-то другого нет. Столь же бессмысленно было бы говорить, что вся Вселенная уменьшилась в своих размерах.

Размер, таким образом, относителен. Не существует абсолютного способа определения размеров какого-либо объекта и нельзя сказать, что он имеет такие-то и такие-то абсолютные размеры. Определить размер можно, используя другие мерки, такие, как линейка или метровый стержень. Но какова длина метрового стержня? До 1 января 1962 г. метр определялся как длина определенного платинового бруска, который хранился при постоянной температуре в подвалах Севра, во Франции. С 1 января 1962 г. новым стандартом метра служит длина 1 650 763, 73 длин волн оранжевых лучей определенного типа, испускаемых в вакууме атомом криптона-86. Конечно, если все во Вселенной, включая и длину волны этого излучения, увеличится или уменьшится в одной и той же пропорции, то никаким экспериментальным способом не удастся заметить это изменение.

 

 

То же самое справедливо и в отношении интервалов времени. «Много» или «мало» времени требуется для одного оборота Земли вокруг Солнца? Маленькому ребенку время от одного Нового года до другого кажется вечностью. Геологу, привыкшему мыслить периодами в миллионы лет, один год кажется всего лишь одним мгновением. Интервал времени, подобно расстоянию в пространстве, невозможно измерить иначе, как сравнивая его с каким-либо другим отрезком времени. Год определяется периодом вращения Земли вокруг Солнца; день — временем, необходимым для одного оборота Земли вокруг своей оси; час — временем, за которое совершает один оборот большая стрелка часов. Всегда один интервал времени измеряется сравнением его с другим.

 

 

У Г. Уэллса есть известный научно-фантастический рассказ под названием «Новый ускоритель».

Из него можно извлечь лишь такой же урок, что и из шутки о двух моряках, но только урок этот касается не пространства, а времени. Один ученый открывает способ ускорения всех процессов в своем организме. Его сердце бьется чаще, его мозг работает быстрее и так далее. Вы догадываетесь, что произойдет. Все в мире кажется ему замедлившимся почти до полной остановки. Ученый выходит погулять и двигается медленно, чтобы из-за трения о воздух не воспламенились его брюки. Улица полна людей-статуй. Мужчина застыл в тот момент, когда он подмигивал двум проходящим девушкам. В парке играет оркестр, издавая низкое, хрипящее дребезжание.

Пчела жужжит в воздухе, двигаясь со скоростью улитки.

 

 

Давайте проведем еще один мысленный эксперимент. Предположим, что в определенный момент все в космосе начинает двигаться медленнее или быстрее или полностью останавливается на несколько миллионов лет, приходя затем снова в движение. Удастся ли заметить это изменение? Такого эксперимента, с помощью которого удалось бы заметить это, не существует. Время, подобно расстоянию в пространстве, относительно.

Многие другие понятия, известные из повседневной жизни, относительны. Рассмотрим понятия «вверх» и «вниз». В прошлые века людям было нелегко понять, почему человек на противоположной стороне Земли висит вниз головой и вся кровь не приливает ему к голове. Дети и теперь сталкиваются с такой трудностью, узнав впервые, что Земля круглая.

Если бы Земля была сделана из прозрачного стекла и вы смогли бы взглянуть в телескоп прямо сквозь нее, вы действительно увидели бы людей, стоящих вниз головой, ногами на стекле. То есть, они казались бы стоящими вниз головой по отношению к вам.

Разумеется, вы казались бы стоящими вниз головой по отношению к ним. На Земле направление «вверх» — это направление от центра Земли. Направление «вниз» — к центру Земли. В межзвездном пространстве нет абсолютного верха и низа, поскольку там нет планеты, которая могла бы служить «системой отсчета».

Представим себе космический корабль в форме огромного бублика, движущийся в солнечной системе. Он вращается, так что центробежная сила создает искусственное гравитационное поле. Находясь внутри корабля, космонавты могут ходить по наружной стенке этого бублика как по полу. Для них «вниз» — это от центра корабля, «вверх» — к центру, т. е. прямо противоположно тому, что имеет место на вращающейся планете.

 

 

Таким образом, вы видите, что во Вселенной нет абсолютного «верха» и «низа». Вверх и вниз — это направления по отношению к направлению действия гравитационного поля. Было бы бессмысленно говорить, что, пока вы спали, вся Вселенная перевернулась вверх ногами, поскольку нет ничего, что могло бы служить системой отсчета при решении вопроса о том, какое положение заняла Вселенная.

 

 

Другой тип изменения, которое также относительно, — это изменение объекта при его зеркальном отражении. Если заглавную букву R напечатать наоборот, как Я, то вы сразу же увидите, что это зеркальное отражение буквы R. Но если вся Вселенная (включая вас) внезапно станет зеркально отраженной, то у вас не будет способа обнаружить подобное изменение. Конечно, если бы только один человек превратился в свое зеркальное отражение (об этом Г. Уэллс также написал рассказ под названием «Рассказ Плэттнера»), а Вселенная осталась бы прежней, то ему показалось бы, что все стало наоборот. Чтобы прочесть книгу, он должен был бы подносить ее к зеркалу, подобно Алисе в Зазеркалье,[1]ухитрявшейся читать напечатанную зеркально отраженными буквами поэму «Jabberwocky», держа ее перед зеркалом. Но если бы все стало наоборот, то никаким экспериментом не удалось бы обнаружить это изменение. Было бы так же бессмысленно говорить, что имело место подобное обращение, как сказать, что Вселенная перевернулась или удвоилась в размерах.

Абсолютно ли движение? Существует ли какой-либо класс экспериментов, который с определенностью показал бы, движется объект или покоится?

Является движение еще одной относительной категорией, судить о которой можно, только сопоставляя местоположение одного предмета с местоположением другого? Или же движению присуще нечто своеобразное, что делает его отличным от относительных категорий, рассмотренных выше?

Остановитесь и внимательно подумайте над этим некоторое время, прежде чем переходить к следующей главе. Отвечая именно на такие вопросы, Эйнштейн развил свою знаменитую теорию относительности. Его теория так революционна, так противоречит «здравому смыслу», что даже сегодня имеются тысячи ученых (в том числе и физиков), для которых понимание ее основных положений сопряжено с такими же трудностями, с какими сталкивается ребенок, пытаясь понять, почему люди в южном полушарии не падают с Земли.

Если вы молоды, то имеете большие преимущества перед этими учеными. В вашем мозгу еще не выработались те глубокие колеи, по которым мысль так часто бывает вынуждена двигаться. Но, каким бы ни был ваш возраст, если вы готовы поупражнять свои умственные силы, то нет причин, которые помешали бы вам научиться чувствовать себя как дома в этом новом странном мире относительности.

 

Принцип Маха

 

 

 

Принцип эквивалентности Эйнштейна гласит, что силовое поле, возникающее тогда, когда телу сообщается ускорение или вращение, в зависимости от выбора системы отсчета может рассматриваться как инерционное или как гравитационное. Но при этом возникает очень важный вопрос, который ведет к глубоким, еще не решенным задачам.

Являются эти силовые поля результатом движения по отношению к пространству — времени, существующему независимо от вещества, или само пространство — время создано веществом? Иначе говоря, создается ли пространство — время галактиками и другими телами Вселенной?

Мнения специалистов разошлись. Все старые доводы восемнадцатого и девятнадцатого веков о существованин «пространства» или «эфира», независимого от вещества, высказываются и сейчас; но только теперь спорят о пространственно-временной структуре (иногда называемой «метрическим полем») космоса. Большинство ученых, писавших о теории относительности (Артур Эддингтон, Бертран Рассел, Альфред Уайтхед и др.), считали, что свойства пространства — времени не зависят от звезд, хотя, конечно, местные искривления создаются звездами. Грубо говоря, если бы не существовало никаких других тел во Вселенной, кроме Земли, то было бы возможно, утверждают эти авторы, вращение Земли относительно пространства — времени.

(Вопрос о том, какой кривизной в целом — положительной, отрицательной или нулевой — обладает это пространство, не имеет отношения к данному спору.)

Одинокий космический корабль, единственное тело во Вселенной, мог бы включить свои двигатели и ускориться. Космонавты внутри корабля при ускорении почувствовали бы действие сил инерции.

Одинокая Земля, вращаясь в пространстве, сплющивалась бы в направлении экватора. Сплющивание возникло бы из-за того, что частицы вещества испытывали бы действие сил, двигаясь не по геодезическим в пространстве — времени. Частицы должны были бы двигаться, так сказать, против «шерсти» пространства — времени. Было бы даже возможно на этой одинокой Земле измерить силу инерции, называемую кориолисовой,[5]и определить направление вращения Земли.

Эйнштейн признавал возможную справедливость подобной точки зрения, но (по крайней мере в молодости) она ему была не по душе. Он предпочитал точку зрения, впервые предложенную ирландским философом епископом Беркли. Беркли доказывал, что если Земля — единственное тело во Вселенной, то бессмысленно говорить о возможности ее вращения. Подобный взгляд в какой-то степени разделяли немецкий философ семнадцатого столетия Лейбниц и голландский физик Христиан Гюйгенс, но он был забыт, пока Эрнст Мах (австрийский физик девятнадцатого века) не возродил его, предложив правдоподобную научную теорию. Мах предвосхитил многое в теории относительности, и Эйнштейн писал о большом влиянии Маха на его ранние мысли.

(С грустью нужно признать, что Мах в старости, когда его мысли нашли свое отражение в теории Эйнштейна, отказался признать справедливость теории относительности.)

С точки зрения Маха, космос, лишенный звезд, не будет иметь той пространственно-временной структуры, по отношению к которой могла бы вращаться Земля. Для существования гравитационных (или инерционных) полей, способных сплющить планету или поднять жидкость на стенку вращающегося ведра, необходимо существование звезд, создающих структуру пространства — времени. Не имея такой структуры, пространство — время не имело бы и геодезических. Мы не могли бы даже сказать, что пучок света, распространяющийся в полностью пустом пространстве, двигался бы по геодезической, так как при отсутствии пространственно-временной структуры пучок не смог бы предпочесть одну траекторию другой.

 

 

Как выразился А. д'Абро (в своей превосходной книге «Эволюция научной мысли»), пучок не знал бы, по какому пути пойти. Даже существование сферического тела, подобного Земле, было бы невозможно. Частицы Земли собраны воедино тяготением, а тяготение передвигает частицы по геодезическим. Не будь структуры у пространства — времени, не будь геодезических.

Земля (по словам д'Абро) не знала бы, какую форму ей принять. Об этой точке зрения Эддингтон однажды сказал юмористически: «В полностью пустой Вселенной (если Мах прав) гравитационные поля Эйнштейна должны рухнуть!»

Д'Абро описывает мысленный опыт, помогающий понять позицию Маха. Представим космонавта, витающего в пространстве. Пусть он единственное тело во Вселенной. В руке у него кирпич. Мы знаем, что кирпич должен быть невесом (нет гравитационной массы). Будет ли у него инертная масса? Если космонавт попытается кинуть кирпич в пространство, возникнет ли сопротивление движению его руки? С точки зрения Маха, его не должно быть.

 

 

В отсутствие звезд, создающих метрическое поле пространства — времени, нет ничего, по отношению к чему мог бы ускориться кирпич. Есть, конечно, космонавт, но его масса так мала, что любыми эффектами, связанными с ним, можно пренебречь.

Эйнштейн для точки зрения Маха применял термин «принцип Маха». Вначале Эйнштейн надеялся, что эта точка зрения может быть введена в теорию относительности. И действительно, он создал модель Вселенной (о ней будет рассказано в гл. 9), в которой пространственно-временное строение Вселенной существует лишь постольку, поскольку существуют создающие ее звезды и другие материальные тела.

«В последовательной теории относительности, — писал Эйнштейн в 1917 г., публикуя первое математическое описание этой модели, — не может быть никакой инерции относительно «пространства», а лишь инерция масс по отношению друг к другу. Если, следовательно, я удалю какую-то массу достаточно далеко от всех других масс Вселенной, ее инерция упадет до нуля».

Позже был найден серьезный изъян в космической модели Эйнштейна, и он был вынужден отказаться от принципа Маха, но этот принцип продолжает оказывать серьезное влияние и на современных космологов. Это происходит потому, что относительность движения доведена в нем до предела. Противоположная точка зрения, предполагающая существование пространственно-временной метрики даже в отсутствие звезд, в действительности очень близка к старой теории эфира. Вместо неподвижного, невидимого студня, именуемого эфиром, предлагается неподвижная, невидимая структура пространства — времени. Если принять это предположение, то ускорения и вращения приобретают подозрительно абсолютный характер. И действительно, проповедники этой точки зрения без колебании говорят о вращениях и ускорениях как об «абсолютных».

Однако если явления инерции относительны, но не по отношению к такой структуре, а лишь по отношению к структуре, созданной звездами, то относительность выступает в своем наиболее чистом виде.

Деннис Скьяма, английский космолог, идя по пути Маха, создал остроумную теорию. Ее занимательное изложение дано в его популярной книге «Единство Вселенной». Согласно Скьяма, инерционные явления, возникающие при вращении и ускорении, являются результатом движения по отношению ко всему веществу во Вселенной. Если это так, то измерения инерции дают метод оценки полного количества вещества во Вселенной! Уравнения Скьяма показывают, что влияние ближайших звезд на инерцию поразительно мало. Все звезды в нашей Галактике, по его расчету, дают примерно лишь одну десятимиллионную часть силы инерции на Земле.

Главная часть этой силы создается далекими галактиками. Скьяма оценил, что 80 процентов силы инерции являются результатом движения относительно галактик, настолько удаленных, что их еще не видно в наших телескопах!

Во времена Маха не было известно, что кроме нашей Галактики существуют и другие галактики, не было известно даже, что наша Галактика вращается. Сейчас астрономы знают, что центробежные силы, возникающие при вращении, очень сильно сплющивают нашу Галактику.

 

 

С точки зрения Маха, это сплющивание могло произойти только в том случае, если вне нашей Галактики существуют огромные массы вещества. Знай Мах о явлениях инерции при вращении нашей Галактики, указывает Скьяма, он мог бы предсказать существование и других галактик за пятьдесят лет до их открытия.

Необычность точки зрения Скьяма станет более наглядной со следующей иллюстрацией. Однажды я купил головоломку, представляющую собой квадратную коробочку со стеклянной крышкой, внутри которой было четыре стальных шарика. Каждый шарик располагался в желобке, шедшем от центра квадрата к одному из его углов. Задача состояла в том, чтобы загнать одновременно все четыре шарика в углы. Единственный способ сделать это — положить головоломку на стол и привести ее во вращение. Центробежная сила — вот что помогает решить эту головоломку. Если Скьяма прав, то эту головоломку нельзя было бы разгадать подобным способом, не будь миллиардов галактик на громадных расстояниях от нашей.

 

 

Будет ли теория относительности развиваться по направлению, указанному Махом и Скьяма, или сохранится не зависящая от звезд структура пространства — времени? На это никто не может ответить. Если будет успешно развиваться теория поля, в которой элементарные частицы вещества можно будет понять как пространственно-временное поле, то звезды сами по себе станут всего лишь одним из проявлений такого поля. Вместо звезд, создающих структуру, структура будет создавать звезды. В настоящее время, однако, все это лишь предположения.

 

Парадокс близнецов

 

 

 

Какова была реакция всемирно известных ученых и философов на странный, новый мир относительности? Она была различной. Большинство физиков и астрономов, смущенные нарушением «здравого смысла» и математическими трудностями общей теории относительности, хранили благоразумное молчание. Но ученые и философы, способные понять теорию относительности, встретили ее с радостью. Мы уже упоминали, как быстро Эддингтон осознал важность достижений Эйнштейна. Морис Шлик, Бертран Рассел, Рудольф Кернэп, Эрнст Кассирер, Альфред Уайтхед, Ганс Рейхенбах и многие другие выдающиеся философы были первыми энтузиастами, которые писали об этой теории и старались выяснить все ее следствия. Книга Рассела «Азбука теории относительности» была впервые опубликована в 1925 г., но до сих пор она остается одним из лучших популярных изложений теории относительности.

Многие ученые оказались неспособными освободиться от старого, ньютоновского образа мыслей.

Они во многом напоминали ученых далеких дней Галилея, которые не могли заставить себя признать, что Аристотель мог ошибаться. Сам Майкельсон, знания математики которого были ограниченными, так и не признал теории относительности, хотя его великий эксперимент проложил путь специальной теории. Позже, в 1935 г., когда я был студентом Чикагского университета, курс астрономии читал нам профессор Вильям Макмиллан, широко известный ученый. Он открыто говорил, что теория относительности — это печальное недоразумение.

«Мы, современное поколение, слишком нетерпеливы, чтобы чего-нибудь дождаться», — писал Макмиллан в 1927 г. «За сорок лет, прошедших после попытки Майкельсона обнаружить ожидавшееся движение Земли относительно эфира, мы отказались от всего, чему нас учили раньше, создали постулат, самый бессмысленный из всех, который мы только смогли придумать, и создали неньютоновскую механику, согласующуюся с этим постулатом. Достигнутый успех — превосходная дань нашей умственной активности и нашему остроумию, но нет уверенности, что нашему здравому смыслу».

Самые разнообразные возражения выдвигались против теории относительности. Одно из наиболее ранних и наиболее упорных возражений высказывалось относительно парадокса, впервые упомянутого самим Эйнштейном в 1905 г. в его статье о специальной теории относительности (слово «парадокс» употребляется для обозначения чего-то противоположного общепринятому, но логически непротиворечивого).

Этому парадоксу уделяется много внимания в современной научной литературе, поскольку развитие космических полетов наряду с конструированием фантастически точных приборов для измерения времени может вскоре дать способ проверки этого парадокса прямым способом.

Этот парадокс обычно излагается как мысленный опыт с участием близнецов. Они сверяют свои часы. Один из близнецов на космическом корабле совершает длительное путешествие в космосе. Когда он возвращается, близнецы сравнивают показания часов. Согласно специальной теории относительности часы путешественника покажут несколько меньшее время. Другими словами, время в космическом корабле движется медленнее, чем на Земле.

До тех пор, пока космический маршрут ограничен солнечной системой и совершается с относительно малой скоростью, эта разница времен будет пренебрежимо малой. Но на больших расстояниях и при скоростях, близких к скорости света, «сокращение времени» (так иногда называют это явление) будет возрастать. Нет ничего невероятного в том, что со временем будет открыт способ, с помощью которого космический корабль, медленно ускоряясь, сможет достичь скорости, лишь немного меньшей скорости света. Это даст возможность посещать другие звезды в нашей Галактике, а возможно, даже и другие галактики. Итак, парадокс близнецов — больше чем просто головоломка для гостиной, когда-нибудь он станет повседневностью космических путешественников.

Допустим, что космонавт — один из близнецов — проходит расстояние в тысячу световых лет и возвращается: это расстояние мало по сравнению с размерами нашей Галактики. Есть ли уверенность, что космонавт не умрет задолго до конца пути? Не потребуется ли для его путешествия, как во многих научно-фантастических произведениях, целой колонии мужчин и женщин, поколениями живущих и умирающих, пока корабль совершает свое длинное межзвездное путешествие?

 

 

Ответ зависит от скорости движения корабля.

Если путешествие будет происходить со скоростью, близкой к скорости света, время внутри корабля будет течь много медленней. По земному времени путешествие будет продолжаться, конечно, более 2000 лет. С точки зрения космонавта, в корабле, если он движется достаточно быстро, путешествие может продлиться лишь несколько десятилетий!

Для тех читателей, которые любят численные примеры, приведем результат недавних расчетов Эдвина Макмиллана, физика из Калифорнийского университета в Беркли. Некий космонавт отправился с Земли к спиральной туманности Андромеды.

До нее немного меньше двух миллионов световых лет. Космонавт первую половину дороги проходит с постоянным ускорением 2g, затем с постоянным замедлением в 2g вплоть до достижения туманности. (Это удобный способ создания постоянного поля тяготения внутри корабля на все время длинного путешествия без помощи вращения.) Обратный путь совершается тем же способом. Согласно собственным часам космонавта продолжительность путешествия составит 29 лет. По земным часам пройдет почти 3 миллиона лет!

Вы сразу заметили, что возникают самые разнообразные привлекательные возможности. Сорокалетний ученый и его юная лаборантка влюбились друг в друга. Они чувствуют, что разница в возрасте делает их свадьбу невозможной. Поэтому он отправляется в длинное космическое путешествие, передвигаясь со скоростью, близкой к скорости света. Он возвращается в возрасте 41 года. Тем временем его подруга на Земле стала тридцатитрехлетней женщиной. Вероятно, она не смогла ждать возвращения любимого 15 лет и вышла замуж за кого-то другого. Ученый не может вынести этого и отправляется в другое продолжительное путешествие, тем более что ему интересно выяснить отношение последующих поколений к одной, созданной им теории, подтвердят они ее или опровергнут. Он возвращается на Землю в возрасте 42 лет. Подруга его прошлых лет давно умерла, и, что еще хуже, от его столь дорогой ему теории ничего не осталось. Оскорбленный, он отправляется в еще более длинный путь, чтобы, возвратившись в возрасте 45 лет, увидеть мир, проживший уже несколько тысячелетий. Возможно, что, подобно путешественнику из романа Уэллса «Машина времени», он обнаружит, что человечество выродилось. И вот тут он «сядет на мель». «Машина времени» Уэллса могла передвигаться в обоих направлениях, а у нашего одинокого ученого не будет способа вернуться обратно в привычный ему отрезок человеческой истории.

Если такие путешествия во времени станут возможными, то возникнут совершенно необычные моральные вопросы. Будет ли что-нибудь незаконного в том, например, что женщина вышла замуж за собственного пра-пра-пра-пра-пра-правнука?

Заметьте, пожалуйста: этот сорт путешествий во времени обходит все логические ловушки (этот бич научной фантастики), как, например, возможность попасть в прошлое и убить собственных родителей до вашего появления на свет или юркнуть в будущее и подстрелить самого себя, послав пулю в лоб.

Рассмотрим, например, положение с мисс Кэт из известного шуточного стишка:

Юная леди по имени Кэт

Двигалась много быстрее, чем свет.

Но попадала всегда не туда:

Быстро помчишься — придешь во вчера.

Перевод А. И. Базя

 

Возвратись она вчера, она должна была бы встретиться со своим двойником. В противном случае это не было бы действительно вчера. Но вчера не могло быть двух мисс Кэт, поскольку, отправляясь в путешествие во времени, мисс Кэт ничего не помнила о своей встрече со своим двойником, состоявшейся вчера. Итак, перед вами логическое противоречие. Такого типа путешествия во времени невозможны логически, если не предполагать существования мира, идентичного нашему, но движущегося по другому пути во времени (на день раньше). Даже при этом положение дел очень усложняется.

 

 

Заметьте также, что эйнштейновская форма путешествий во времени не приписывает путешественнику какого-то подлинного бессмертия или хотя бы долголетия. С точки зрения путешественника, старость подходит к нему всегда с нормальной скоростью. И лишь «собственное время» Земли кажется этому путешественнику несущимся с головокружительной скоростью.

Анри Бергсон, известный французский философ, был наиболее выдающимся из мыслителей, скрестивших шпаги с Эйнштейном из-за парадокса близнецов. Он много писал об этом парадоксе, потешаясь над тем, что казалось ему логически абсурдным. К сожалению, все им написанное доказало лишь то, что можно быть крупным философом без заметных знаний математики. В последние несколько лет протесты появились снова. Герберт Дингль, английский физик, «наиболее громко» отказывается поверить в парадокс. Уже немало лет он пишет остроумные статьи об этом парадоксе и обвиняет специалистов по теории относительности то в тупости, то в изворотливости. Поверхностный анализ, который будет проведен нами, конечно, не разъяснит полностью идущую полемику, участники которой быстро углубляются в сложные уравнения, но поможет уяснить общие причины, приведшие к почти единодушному признанию специалистами того, что парадокс близнецов будет осуществляться именно так, как написал об этом Эйнштейн.

Возражение Дингля, наиболее сильное из когда-либо выдвинутых против парадокса близнецов, заключается в следующем. Согласно общей теории относительности не существует никакого абсолютного движения, нет «избранной» системы отсчета.

Всегда можно выбрать движущийся предмет за неподвижную систему отсчета, не нарушая при этом никаких законов природы. Когда за систему отсчета принята Земля, то космонавт совершает длительное путешествие, возвращается и обнаруживает, что стал моложе брата-домоседа. А что произойдет, если систему отсчета связать с космическим кораблем? Теперь мы должны считать, что Земля проделала длительное путешествие и возвратилась назад.

В этом случае домоседом будет тот из близнецов, который находился в космическом корабле. Когда Земля возвратится, не станет ли брат, находившийся на ней, моложе? Если так произойдет, то в создавшемся положении парадоксальный вызов здравому смыслу уступит место очевидному логическому противоречию. Ясно, что каждый из близнецов не может быть моложе другого.

Дингль хотел бы сделать из этого вывод: или необходимо предположить, что по окончании путешествия возраст близнецов будет в точности одинаков, или принцип относительности должен быть отброшен.

Не выполняя никаких вычислений, нетрудно понять, что кроме этих двух альтернатив существуют и другие. Верно, что всякое движение относительно, но в да



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 541; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.154.238 (0.019 с.)