Волоконно-оптические линии связи 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Волоконно-оптические линии связи



Волоконно-оптические линии связи (ВОЛС) представляют собой системы для передачи световых сигналов микроволнового диапазона волн. Этот вид линий связи рассматривается как наиболее перспективный. Достоинствами ВОЛС являются низкие потери, большая пропускная способность, малые масса и габаритные размеры, экономия цветных металлов, высокая степень защищенности от внешних и взаимных помех.

Волоконно-оптические линии передачи данных состоят из трех основных компонентов: источника света, носителя, по которому распространяется световой сигнал, и приемника сигнала.

Основным элементом оптических кабелей является оптическое волокно (световод), выполненное в виде тонкого стеклянного волокна цилиндрической формы, по которому передаются световые сигналы.

Оптическое волокно имеет двухслойную конструкцию и состоит из сердцевины и оболочки с разными показателями преломления n 1 и n 2 соответственно. Сердцевина служит для передачи электромагнитной энергии. Назначение оболочки – создание условий полного отражения на границе «сердцевина–оболочка» и защита от световых помех из окружающего пространства.

Принцип действия волоконного световода основан на использовании процессов отражения и преломления оптической волны на границе раздела двух сред с различными оптическими свойствами (показателями преломления).

При падении луча на границу раздела двух сред в общем случае появляются преломленная и отраженная волны. Угол падения φп всегда равен углу отражения φотр. Угол преломления φпр связан с углом падения следующим соотношением:

n 1 sin(φп) = n 2 sin(φпр),

где n 1и n 2показатели преломления двух сред.

В случае если n 1 > n 2, то из формулы следует, что φпр > φп (рис. 1.1). При увеличении угла падения на границу двух сред со стороны более плотной, можно достичь состояния, когда преломленный луч будет скользить по границе раздела сред без перехода в оптически менее плотную среду.

Рис. 1.1

Угол падения, при котором наблюдается такой эффект, называется предельным углом полного внутреннего отражения. Для всех углов падения, которые превышают предельный, луч не выйдет за границу раздела двух сред. Это явление называется полным внутренним отражением, оно и положено в основу передачи оптического излучения по световоду.

Сердцевина волокна, как правило, состоит из кварца, а оболочка может быть кварцевая или полимерная. Первое волокно называется кварц–кварц, а второе кварц–полимер (кремний-органический компаунд). Исходя из физико-оптических характеристик предпочтение отдается первому варианту. Кварцевое стекло имеет показатель преломления 1.46.

Снаружи световода располагается защитное покрытие для предохранения его от механических воздействий.

Различают одномодовые (средний рисунок) и многомодовые (верхний и нижний рисунок) оптические волокна (рис.1.2) [1]. Понятие «мода» описывает режим распространения световых лучей во внутреннем сердечнике кабеля.

Рис. 1.2

Одномодовое оптоволокно имеет диаметр сердцевины a ~ 5…10 мкм. При этом практически все лучи света распространяются вдоль оптической оси световода, не отражаясь от внешнего проводника. Полоса пропускания такого кабеля составляет до сотен гигагерц на километр. Технологический процесс его изготовления сложен, что делает его достаточно дорогим. Кроме того, в волокно такого маленького диаметра сложно направить пучок света без потерь энергии. С увеличением диаметра сердцевины оптоволокна появляется много возможных путей (мод) распространения излучения.

В многомодовых кабелях используются внутренние сердечники большего диаметра, которые легче изготовить технологически. В стандартах определены два наиболее употребительных многомодовых кабеля: 62.5/125 мкм и 50/125 мкм, где 125 мкм – диаметр внешнего проводника. В многомодовых кабелях во внутреннем проводнике одновременно существует несколько световых лучей, отражающихся от внешнего проводника под разными углами. Угол отражения называют модой луча. В многомодовых кабелях с плавным изменением коэффициента преломления режим распространения каждой моды имеет сложный характер. Многомодовые кабели имеют более узкую полосу пропускания – от 500 до 800 МГц/км. Сужение полосы происходит из-за потерь световой энергии при отражениях, а также из-за интерференции лучей разных мод.

В свою очередь, многомодовые волокна выполняются ступенчатыми и градиентными. У ступенчатых световодов показатель преломления сердцевины постоянен, и имеется резкий скачок оптической плотности на границе раздела сердцевина – оболочка. У градиентных световодов показатель преломления сердцевины плавно уменьшается от центра к периферии и различные лучи распространяются в них по волнообразным траекториям.

Пропускная способность оптоволоконных линий связи. При передаче информации по оптоволоконной линии связи сигнал, как правило, преобразуется из электрического в оптический, затем передается по оптоволокну в виде света и в конце линии связи вновь преобразуется в электрический сигнал. Сегодняшний предел пропускной способности в 10 Гбит/с обусловлен невозможностью преобразования электрических сигналов в оптические и обратно.

Оптическое волокно изготавливается из стекла, которое, в свою очередь, производится из песка – недорогого материала, доступного в неограниченных количествах.

Ослабление силы света при прохождении через стекло зависит от длины волны. В телекоммуникационных системах используются три диапазона длин волн: 0.85, 1.30, 1.55 мкм. Последние два обладают хорошими характеристиками ослабления (менее 5 % потерь на километр). Диапазон 0.85 мкм обладает более высоким ослаблением, но для этой длины волны источники света (лазеры) и электроника могут быть сделаны из одного материала (арсенида галлия).

Полоса пропускания или пропускная способность оптоволоконной линии связи зависит от многих факторов. В основном это:

• полоса пропускания (длительность фронта/среза светового импульса) электронно-оптического преобразователя на входе линии;

• длина волны и ширина спектральной линии оптического излучателя;

• тип и свойства применяемого оптического волокна;

• полоса пропускания опто-электронного преобразователя на выходе линии.

В качестве преобразователей электрического сигнала в оптический в настоящее время используют светодиоды и лазерные диоды.

Время нарастания-спада светового излучения составляет у светодиодов 1…20 нc, а у лазерных диодов – 0.5…2 нc.

Более существенны различия в спектральных характеристиках излучателей. Ширина спектра: рис. 3.1, а – у светодиода по уровню 0.5 составляет 30…50 нм; б – у лазерных диодов 0.1...2 нм; в – у одномодового лазера 0.1…0.4 нм.

Рис. 1.3

Основным фактором, ограничивающим пропускную способность опто- волокна, при больших длинах линий является дисперсия.

Дисперсия – это рассеяние во времени спектральных и модовых составляющих оптического сигнала при распространении его по оптоволокну. Это приводит к тому, что при распространении по линии связи энергия сигнала размывается по времени. Длительность сигнала увеличивается, а амплитуда падает.

«Межмодовая» составляющая дисперсии объясняется тем, что поступающий в линию световой сигнал распространяется по волокну разными путями (модами) и время распространения его по этим путям различно (рис. 1.4).

Типичные значения межмодовой дисперсии составляют для ступенчатого оптоволокна 30…50 нс/км, а для градиентного волокна 2…4 нс/км.

В одномодовом оптоволокне существует только одна мода распространения сигнала, и модовая составляющая дисперсии отсутствует. Естественно, что с увеличением длины линии связи дисперсия увеличивается.

Рис. 1.4

Спектральная составляющая дисперсии обусловлена зависимостью коэффициента преломления сердцевины от длины волны излучения, точнее от ширины спектра излучения. С уменьшением ширины спектральной линии излучения уменьшается и спектральная составляющая дисперсии. Дисперсия приводит к расширению длительности импульсов при прохождении по оптоволокну (вплоть до перекрытия) и уменьшению полосы пропускания линии. По частотно-пропускной способности и дальности передачи лучшими являются одномодовые световоды, а худшими – многомодовые ступенчатые.

Реальные значения полосы пропускания оптоволоконных линий связи на одномодовом волокне составляют ~4000 МГц/км. Т. е. линия связи длиной 100 км будет иметь полосу пропускания ~40 МГц.

Полоса пропускания линий на многомодовом градиентном волокне имеет значение около 500…1500 МГц/км.

Стоимость одномодовых линий и компонентов значительно выше стоимости многомодовых линий связи.

Электрические линии связи

Одним первых и до сих пор часто применяемых кабелей является витая пара. Состоит из двух скрученных изолированных медных проводов. Скрутка позволяет уменьшить электромагнитное взаимодействие нескольких расположенных рядом витых пар.

Кабели на основе неэкранированной витой пары. Медный неэкранированный кабель UTP (Unshielded Twisted Pair) в зависимости от электрических и механических характеристик разделяется на 7 категорий:

Кабели категории 1 применяются там, где требования к скорости передачи данных минимальны. Обычно это кабель для цифровой или аналоговой передачи голоса и низкоскоростной (до 20 Кбит/с) передачи данных. До 1983 г. это был основной тип кабеля для телефонной разводки.

Кабели категории 2 были впервые применены фирмой IBM при построении собственной кабельной системы. Главное требование к кабелям этой категории – способность передавать сигналы со спектром до 1 МГц.

Кабели категории 3 были стандартизованы в 1991 г., когда был разработан стандарт EIA-568, определивший характеристики кабелей в диапазоне до 16 МГц. Он предназначен как для передачи данных, так и для передачи голоса. Шаг скрутки проводов составляет примерно 3 витка на фут.

Кабели категории 4 обязаны выдерживать тесты на частоте передачи сигнала 20 МГц и обеспечивать повышенную помехоустойчивость и низкие потери сигнала.

Кабели категории 5 были специально разработаны для поддержки высокоскоростных протоколов, поэтому их характеристики определяются в диапазоне до 100 МГц. (Волновое сопротивление кабеля равно 100 Ом.)

Все кабели UTP независимо от их категории выпускаются в 4-парном исполнении. Каждая из четырех пар кабеля имеет определенный цвет и шаг скрутки. Обычно две пары предназначены для передачи данных, а две – для передачи голоса. Для соединения кабелей с оборудованием используются вилки и розетки RJ-45, представляющие собой 8-контактные разъемы.

С недавнего времени выпускают кабели категорий 6 и 7. Для кабеля категории 6 характеристики определяются до частоты 200 МГц, а для кабелей категории 7 – до 600 МГц. Кабели категории 7 обязательно экранируются, причем как каждая пара, так и весь кабель в целом. Кабель категории 6 может быть как экранированным, так и неэкранированным.

Коаксиальный кабель имеет несимметричную конструкцию и состоит из внутренней медной жилы и оплетки. Он лучше экранирован, чем витая пара, и может обеспечить передачу данных на более дальние расстояния с более высокими скоростями. Современные кабели имеют полосу пропускания около 1 ГГц.

Коаксиальные кабели с волновым сопротивлением 50 Ом описаны в стандарте EIA/TIA-568:

«Толстый» коаксиальный кабель RG-8 и RG-11 имеет волновое сопротивление 50 Ом и внешний диаметр 0.5 дюйма; внутренний проводник диаметром 2.17 мм обеспечивает хорошие механические и электрические характеристики.

«Тонкий» коаксиальный кабель (RG-58/U, RG-58 A/U и RG-58 C/U) имеет внутренний проводник диаметром 0.89 мм, что увеличивает его гибкость и упрощает монтаж. Затухание в кабелях этого типа выше, чем в «толстом», поэтому приходится уменьшать длину кабеля для получения одинакового затухания в сегменте.

Телевизионный кабель RG-59 с волновым сопротивлением 75 Ом широко применяется в кабельном телевидении.



Поделиться:


Последнее изменение этой страницы: 2016-04-23; просмотров: 1152; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.22.244 (0.019 с.)