Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Метаболические пути, созданные методами генной инженерииСодержание книги
Поиск на нашем сайте
В настоящее время предложено создание генно-инженерных систем не просто экспрессирующих отдельные рекомбинантые ферменты, но систем, включающих несколько рекомбинантых ферментов и даже небольшой метаболический путь. Такая задача стала особенно актуальной с развитием молекулярной биотехнологии. Так, усилия по созданию искусственных метаболических путей направлены на создание систем биодеградации ксенобиотиков. Некоторые микроорганизмы обладают природной способностью к деградации различных ксенобиотиков, однако эти природные способности имеют определенные ограничения для использования в промышленных масштабах. Микроорганизмы обладают способностью разрушать только определенные ксенобиотики; биодеградация часто происходит довольно медленно; в большинстве очагов загрязнения содержится смесь ксенобиотико и микроорганизмы, способные разрушать одни вещества, могут инактивироваться другими. Задача создания искусственного метаболического пути может решаться двумя путями: · объединением нескольких рекомбинантных ДНК в одной клетке; · объединением нескольких генов в одной рекомбинантной ДНК. Объединение плазмид Эксперименты по созданию бактериальных штаммов обладающих широкими катаболическими возможностями заключаются в переносе в клетки плазмид, каждая из которых кодирует фермент, расщепляющий определенный класс углеводородов – камфары, октана, нафталина, ксилола. Такие «супербациллы» успешно создаются. Так, был получен штамм, который растет на неочищенной нефти лучше исходных штаммов, взятых по отдельности или вместе. Объединение нескольких генов в одной рекомбинантной ДНК Работы по созданию генно-инженерных систем для утилизации тех или иных субстратов позволяют объединять в рамках одной рекДНК нескольких генов, кодирующих ферменты расщепления этого субстрата. При этом эти гены могут быть как бактериального, так и животного и растительного происхождения. Таким образом может быть создан метаболический путь, который не существует в природе. Одним из примеров может служить создание рекомбинантного штамма E.coli, синтезирующего краситель индиго. Этот краситель широко используется в текстильной промышленности, в частности для окрашивания джинсовой ткани и является одним из самых востребованных красителей. В экспериментах по соединению в одной рекомбинантной системе генов утилизации нафталина, толуола и фенола удалось получить штамм, который окрашивался в синий цвет. Оказалось, что рекомбинантный штамм способен синтезировать индиго из триптофана в 4 стадии. Таким образом, этот неожиданный результат был получен объединением 2-х метаболических путей. Создание рекомбинантных микроорганизмов с новой ферментативной активностью Основной целью создания рекомбинантных микроорганизмов с новой ферментативной активностью, способного превращать существующий субстрат в ценный продукт, который ранее получали только сочетанием микробиологического и химического синтеза. Например, производство L-аскорбиновой кислоты (витамина С), синтез аминокислот, антибиотиков, микробиологического синтеза каучука и других веществ. Производство L-аскорбиновой кислоты (витамина С) – трудоемкий процесс, включающий микробиологическую и химическую стадии. Биохимические исследования показали, что одни бактерии могут превращать глюкозу в 2,5-дикетоглюконовую кислоту (Erwinia, Acetobacter, Gluconobacter), а другие (Corynebacterium) могут превращать 2,5-дикетоглюконовую кислоту в кетогулоновую, т.к. экспрессирует соответствующую редуктазу. Создание рекомбинантного штамма позволило объединить два метаболических пути в одном: ген редуктазы дикетоглюконовой кислоты из Corynebacterium был клонирован и применен для трансформации клеток Erwinia. ЛЕКЦИЯ 5.2 Ферменты в медицине (ЧАСТЬ i)
Практическое использование достижений энзимологии можно найти во всех областях деятельности человека. Ферменты используются в лёгкой, пищевой, микробиологической, фармацевтической промышленности, а также в генноинженерных исследованиях и биотехнологии. Успехи энзимологии находят всё большее применение в медицине. Медицинская энзимология – новое направление энзимологии, которая имеет свои цели и задачи, специфические методологические подходы и методы исследований. Медицинская энзимология развивается по трём направлениям: 1. Энзимодиагностика, которая в свою очередь развивается по двум путям: а) применение высокоочищенных ферментов в качестве избирательных реагентов для количественного определения (с диагностической целью) нормальных или аномальных химических веществ в биологических жидкостях (моча, кровь, желудочный сок и др.); б) обнаружение (открытие) самих ферментов при поражении органов и тканей. 2. Изучение таких болезней, причина которых лежит в отсутствии или недостаточности тех или иных ферментов – энзимопатологии или энзимопатии. 3. Энзимотерапия – использование ферментов и регуляторов активности ферментов в качестве лекарственных препаратов.
Энзимодиагностика
Органная специфичность в распределении ферментов
Дифференцировка клеток на органы и ткани сопровождается биохимическими изменениями в них. В результате таких изменений каждый орган и ткань имеют специфический белковый (в том числе ферментный) состав. Многие ферменты широко распространены в разных тканях, но в различных количествах. По увеличению активности таких ферментов трудно судить о локализации первичных патологических изменений, это неспецифические ферменты. Есть и такие ферменты, которые активны только в одном или нескольких органах и фактически отсутствуют во всех других. Это органоспецифические ферменты, они наиболее информативны, так как увеличение их активности свидетельствует о поражении соответствующих органов. Например, известно всего два фермента, которые находятся только в одном органе – в печени – это орнитинкарбамоилтрансфераза (КФ 2.1.3.3) и урокиназа (КФ 4.2.1.49). Для двух органов специфичны гистидаза (КФ 4.3.1.3) – в печени и эпидермисе, трансамидиназа (КФ 2.1.4.1.) – в почках и поджелудочной железе, креатинкиназа (КФ 2.7.3.2) – в сердечной и скелетной мышцах, гунидинацетат-метилтрансфераза (КФ 2.1.1.2) – в печени и поджелудочной железе. Кислая фосфатаза (КФ 3.1.3.2) очень активна в предстательной железе и малоактивна (до 10% от максимума) в других органах.
Ферменты сыворотки крови
Большинство ферментов находится во внутриклеточной среде (в цитоплазме и органеллах). Тем не менее, о скорости синтеза ферментов и об интенсивности выхода из клеток можно судить по их активности в биологических жидкостях (кровь, слюна, ликвор и др.). Наиболее важным в диагностическом процессе является исследование ферментов плазмы крови. Ферменты, которые обнаруживаются в норме в плазме или в сыворотке крови условно можно разделить на три группы: секреторные, индикаторные и экскреторные. Секреторные ферменты синтезируются в печени, в норме выделяются в плазму крови, где играют определённую физиологическую роль. Например, это ферменты, участвующие в процессе свёртывания крови. Индикаторные (клеточные) ферменты попадают в кровь из тканей, где они выполняют определённые внутриклеточные функции (например, лактатдегидрогеназа, альдолаза и др.). Уровень их сывороточной активности зависит от содержания энзимов в тканях, молекулярной массы, внутриклеточной локализации, прочности связи фермента со своей органеллой, а также от скорости гидролитического разрушения и элиминации. Большая часть индикаторных ферментов в норме определяется в сыворотке крови лишь в следовых количествах. При поражении тех или иных тканей ферменты из клеток «вымываются» в кровь, их активность в сыворотке резко возрастает и таким образом, является индикатором степени и глубины повреждения этих тканей. Клеточные ферменты принято делить на неспецифические и органоспецифические (см. выше). Экскреторные ферменты образуются пищеварительными железами и из их секретов поступают в кровь. К ферментам этой группы можно отнести амилазу, липазу, трипсин и др. Существует другая классификация сывороточных ферментов, по которой их делят на функциональные и нефункциональные. Функциональные ферменты – те ферменты, которые в норме постоянно циркулируют в крови человека и выполняют физиологические функции. К ним относят, например, проферменты компонентов свёртывающей и противосвёртывающей систем крови. Эти ферменты синтезируются в печени, их концентрация в крови такая же, как в тканях, или более высокая. Нефункциональные ферменты плазмы известных физиологических функций в крови не выполняют, их субстраты в плазме не обнаруживаются. Активность нефункциональных ферментов в норме в крови очень мала. Например, это ферменты, выделяемые эндокринными железами: панкреатическая амилаза и липаза, щелочная фосфатаза (из желчи), кислая фосфатаза (из предстательной железы). Причинами появления нефункциональных ферментов в плазме крови являются нормальные процессы разрушения клеток (эритроцитов, лейкоцитов и др.) и удаление ферментов из внеклеточной жидкости путём инактивации и деградации или экскреции.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 459; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.96.108 (0.009 с.) |