Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Где xmax и xmin соответственно наибольшее и наименьшее значения варьирующего признака.Содержание книги
Поиск на нашем сайте
2 Среднее линейное отклонение (d) представляет собой среднюю величину из отклонений вариантов признака от их средней. Его можно рассчитать по формуле средней арифметической, как взвешенной, так и невзвешенной: -- ∑ (x-x)f d = --------------- ∑ f 3 Дисперсия (σ2) представляет собой средний квадрат отклонений индивидуальных значений признака от их средней величины. Дисперсия вычисляется по формулам простой невзвешенной и взвешенной: - 2 ∑(x-x)f δ =------------- ∑f 4 Среднее квадратическое отклонение (σ) представляет собой корень второй степени из среднего квадрата отклонений отдельных значений признака от их средней: δ =√δ 6 Коэффициент вариации: V=δ √ x*100 Эти показатели обычно выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Совокупность считается однородной, если коэффициент вариации не превышает 33 % (для распределений, близких к нормальному).
Тема 5. Средние величины и показатели вариации. План: 1. Выборочный метод. Этапы выборочного метода. 2. Способы отбора единиц из генеральной совокупности. 3. Ошибки выборки. Ключевые слова: выборочная совокупность, ошибка выборки, генеральная совокупность, индивидуальный отбор, групповой отбор, комбинированный отбор. Выборочное наблюдение – такое не сплошное наблюдение, при котором статистическому обследованию подвергаются единицы изучаемой совокупности, отобранные определенным образом. Цель (задача) выборочного наблюдения: по обследуемой части дать характеристику всей совокупности единиц при условии соблюдения всех правил и принципов статистического наблюдения. Причины применения выборочного наблюдения: 1. экономия материальных, трудовых затрат и времени; 2. возможность более детально и подробно изучит отдельные единицы статистической совокупности и их группы. 3. некоторые специфические задачи можно решить только с применением выборочного наблюдения. 4. грамотное и хорошо организованное выборочное наблюдение дает высокую точность результатов. Генеральная совокупность – совокупность единиц, из которых производится отбор. Выборочная совокупность – совокупность отобранных для обследования единиц. В статистике принято различать параметры генеральной совокупности и выборочной совокупности.
Виды выборочного наблюдения По методу отбора: Повторное Попавшая в выборку единица после регистрации наблюдаемых признаков возвращаются в генеральную совокупность для участия в дальнейшей процедуре отбора. Объем генеральной совокупности остается неизменным, что обуславливает постоянное попадание в выборку какой-либо единицы. Бесповторное Попавшая в выборку единица не возвращается в совокупность, из которой происходит отбор. По способу отбора: Собственно-случайная заключается в отношении единиц из генеральной совокупности наугад или наудачу без каких-либо элементов системности. Однако прежде чем проводить такую выборку, нужно убедиться, что все единицы генеральной совокупности имеют равные шансы попасть в выборку, т.е. в полном перечне единиц статистической совокупности отсутствуют пропуски или игнорирования отдельных единиц. Следует, также, четко установить границы генеральной совокупности. Технически сложившейся отбор осуществляется методом жеребьевки или с помощью таблицы случайных чисел. Механическая выборка (каждый 5 по списку) применяется в случаях, когда генеральная совокупность каким-либо образом упорядочена, т.е. имеется определенная последовательность в распределении единиц. При проведении механической выборки устанавливается пропорция отбора, которая устанавливается соотношением генеральной совокупности и выборочной совокупности. Опасность ошибки при механической выборке может появляться вследствие: случайного совпадения выбранного интервала и циклических закономерностей в расположении единиц генеральной совокупности. Районированная выборка используется когда все единицы генеральной совокупности можно разбить на группы (районы, страны) по какому-либо признаку. Комбинированная выборка. Отбор единиц может быть произведен: 1. либо пропорционально объему группы 2. либо пропорционально внутригрупповой дифференциации признака 1. , где n – объем выборочной совокупности, N – объем генеральной совокупности, ni – объем выборки i-группы, Ni – объем i выборки. 2. - этот способ является более точным, но в ходе проведения выборочного наблюдения очень трудно определить заранее о вариации. (до проявления наблюдения). Серийный отбор. Используется когда ЕСС объединены в небольшие группы (серии), например упаковка с готовой продукцией, студенческие группы. Сущность серийной выборки – серии отбираются собственно случайным, либо механическим способом, а затем осуществляется сплошное обследование внутри отобранной серии. Комбинированный отбор. Это комбинация рассмотренных выше способов отбора чаще применяется комбинация типичных и серийных серии, т.е. отбор серий из нескольких типических групп. Отбор моет быть еще многоступенчатым и одноступенчатым, многофразным и однофразным. Многоступенчатый отбор: из генеральной совокупности сначала извлекаются укрупненные группы, затем более мелкие, и так до тех пор, пока не будут отобраны те единицы, которые подвергаются обследованию. Многофразная выборка: предполагает сохранение одной и той же единицы отбора на всех этапах его проведения. При этом отобранные на каждой последующей стадии единицы отбора подвергаются обследованию, программа которого расширяется (Пример: студенты всего института, затем студенты каких-то факультетов).
|
|||||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 660; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.108.200 (0.007 с.) |