Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Физиология крови. Иммунология кровиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
1. Иммунологические основы определения группы крови Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов – агглютиногенов и предположил наличие в сыворотке крови соответствующих им антител – агглютининов. Он описал три группы крови по системе АВ0. IV группа крови была открыта Яном Янским. Групповую принадлежность крови определяют изоантигены, у человека их около 200. Они объединяются в групповые антигенные системы, их носителем являются эритроциты. Изоантигены передаются по наследству, постоянны на протяжении жизни, не изменяются под воздействием экзо– и эндогенных факторов. Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации. Организм реагирует на антигены образованием специфических антител. Антитела – иммуноглобулины образуются при введении антигена в организм. Они способны взаимодействовать с одноименными антигенами и вызывать ряд реакций. Различают нормальные (полные) и неполные антитела. Нормальные антитела (α– и β– агглютинины) находятся в сыворотке крови людей, не иммунизированных антигенами. Неполные антитела (антирезус-агглютинины) образуются в ответ на введение антигена. В антигенной системе АВ0 четыре группы крови. Антигены (агглютиногены А, В) – полисахариды, они находятся в мембране эритроцитов и связаны с белками и липидами. В эритроцитах может содержаться антиген 0, у него слабовыраженные антигенные свойства, поэтому в крови нет одноименных ему агглютининов. Антитела (агглютинины α и β) находятся в плазме крови. Одноименные агглютиногены и агглютинины не встречаются в крови одного и того же человека, так как в этом случае произошла бы реакция агглютинации. Она сопровождается склеиванием и разрушением (гемолизом) эритроцитов. Деление по группам крови системы АВ0 основано на комбинациях агглютиногенов эритроцитов и агглютининов плазмы. I (0) – в мембране эритроцитов нет агглютиногенов, в плазме крови присутствуют α– и β-агглютинины. II (A) – в мембране эритроцитов присутствует агглютиноген. A, в плазме крови – α-агглютинин. III (B) – в мембране эритроцитов присутствует агглютиноген. B, в плазме крови – β-агглютинин. IV (AB) – в мембране эритроцитов присутствует агглютиноген А и агглютиноген В, в плазме нет агглютининов. Для определения группы крови используют стандартные гемагглютинирующие сыворотки I, II, III, IV групп двух серий с разным титром антител. При смешивании крови с сыворотками происходит реакция агглютинации или она отсутствует. Наличие агглютинации эритроцитов указывает на наличие в эритроцитах агглютиногена, одноименного агглютинину в данной сыворотке. Отсутствие агглютинации эритроцитов указывает на отсутствие в эритроцитах агглютиногена, одноименного агглютинину данной сыворотки. Тщательное определение групп крови донора и реципиента по антигенной системе АВ0 необходимо для успешной гемотрансфузии. Антигенная система эритроцитов, иммунный конфликт Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации. Антитела – это иммуноглобулины, образующиеся при введении антигена в организм. Изоантигены (внутривидовые антигены) – антигены, происходящие от одного вида организмов, но генетически чужеродные для каждого индивидуума. Наибольшее значение имеют эритроцитарные антигены, особенно антигены системы АВ0 и системы Rh-hr. Иммунологический конфликт в системе АВ0 происходит при встрече одноименных антигенов и антител, вызывает агглютинацию эритроцитов и их гемолиз. Иммунологический конфликт наблюдается: 1) при переливании группы крови, несовместимой в групповом отношении; 2) при переливании в больших количествах группы крови людям с другими группами крови. При переливании крови учитывают прямое и обратное правило Оттенберга. Прямое правило Оттенберга: при переливании малых объемов крови (1/10 объема циркулирующей крови) обращают внимание на эритроциты донора и плазму реципиента – человек с I группой крови – универсальный донор. Обратное правило Оттенберга: при переливании больших объемов крови (более 1/10 объема циркулирующей крови) обращают внимание на плазму донора и эритроциты реципиента. Человек с IV группой крови – универсальный реципиент. В настоящее время рекомендуется переливать только одногруппную кровь и только в небольших количествах. Антигенная система Rh открыта в 1940 г. К. Ландштайнером и А. Винером. Они обнаружили в сыворотке крови обезьян—макак, резусов антитела – антирезусагглютинин. Антигены системы резус – липопротеиды. Эритроциты 85 % людей содержат резус-агглютиноген, кровь их резус-положительна, у 15 % людей резус-антигена нет, их кровь резус-отрицательна. Описаны шесть разновидностей антигенов системы Rh. Наиболее важными являются Rh0 (D), rh`(C), rh»(E). Наличие хотя бы одного из трех антигенов указывает, что кровь резус-положительна. Особенность системы Rh заключается в том, что она не имеет естественных антител, они являются иммунными и образуются после сенсибилизации – контакта Rh– крови с Rh+. При первичном переливании Rh– человеку Rh+ кровь резусконфликт не развивается, так как в крови реципиента нет естественных антирезус-агглютининов. Иммунологический конфликт по антигенной системе Rh происходит при повторном переливании Rh(—) крови человеку Rh+, в случаях беременности, когда женщина Rh(—), а плод Rh+. При первой беременности Rh(—) матери Rh+ плодом резусконфликт не развивается, так как титр антител невелик. Иммунные антирезус-агглютинины не проникают через плацентарный барьер. Они имеют большой размер белковой молекулы (иммуноглобулин класса М). При повторной беременности титр антител увеличивается. Антирезус-агглютинины (иммуноглобулины класса G) имеют небольшую молекулярную массу и легко проникают через плацентарный барьер в организм плода, где вызывают агглютинацию и гемолиз эритроцитов. Физиология гемостаза Структурные компоненты гемостаза Гемостаз – сложная биологическая система приспособительных реакций, обеспечивающая сохранение жидкого состояния крови в сосудистом русле и остановку кровотечений из поврежденных сосудов путем тромбирования. Система гемостаза включает следующие компоненты: 1) cосудистую стенку (эндотелий); 2) форменные элементы крови (тромбоциты, лейкоциты, эритроциты); 3) плазменные ферментные системы (систему свертывания крови, систему фибринолиза, клекреин-кининовую систему); 4) механизмы регуляции. Функции системы гемостаза. 1. Поддержание крови в сосудистом русле в жидком состоянии. 2. Остановка кровотечения. 3. Опосредование межбелковых и межклеточных взаимодействий. 4. Опсоническая – очистка кровяного русла от продуктов фагоцитоза небактериальной природы. 5. Репаративная – заживление повреждений и восстановления целостности и жизнеспособности кровеносных сосудов и тканей. Факторы, поддерживающие жидкое состояние крови: 1) тромборезистентность эндотелия стенки сосуда; 2) неактивное состояние плазменных факторов свертывания крови; 3) присутствие в крови естественных антикоагулянтов; 4) наличие системы фибринолиза; 5) непрерывный циркулирующий поток крови. Тромборезистентность эндотелия сосудов обеспечивается за счет антиагрегантных, антикоагулянтных и фибринолитических свойств. Антиагрегантные свойства: 1) синтез простациклина, который обладает антиагрегационным и сосудорасширяющим действием; 2) синтез оксида азота, обладающего антиагрегационным и сосудорасширяющим действием; 3) синтез эндотелинов, которые сужают сосуды и препятствуют агрегации тромбоцитов. Антикоагулянтные свойства: 1) синтез естественного антикоагулянта антитромбина III, который инактивирует тромбин. Антитромбин III взаимодействует с гепарином, образуя антикоагуляционный потенциал на границе крови и стенки сосуда; 2) синтез тромбомодулина, который связывает активный фермент тромбин и нарушает процесс образования фибрина за счет активации естественного антикоагулянта протеина С. Фибринолитические свойства обеспечиваются синтезом тканевого активатора плазминогена, который является мощным активатором системы фибринолиза. Различают два механизма гемостаза: 1) сосудисто-тромбоцитарный (микроциркулярный); 2) коагуляционный (свертывание крови). Полноценная гемостатическая функция организма возможна при условии тесного взаимодействия этих двух механизмов. 2. Механизмы образования тромбоцитарного и коагуляционного тромба Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах, где имеются низкое кровяное давление и малый просвет сосудов. Остановка кровотечения может произойти за счет: 1) сокращения сосудов; 2) образования тромбоцитарной пробки; 3) сочетания того и другого. Сосудисто-тромбоцитарный механизм обеспечивает остановку кровотечения благодаря способности эндотелия синтезировать и выделять в кровь биологически активные вещества, изменяющие просвет сосудов, а также адгезивно-агрегационной функции тромбоцитов. Изменение просвета сосудов происходит за счет сокращения гладкомышечных элементов стенок сосудов как рефлекторным, так и гуморальным путем. Тромбоциты обладают способностью к адгезии (способностью прилипать к чужеродной поверхности) и агрегацией (способностью склеиваться друг с другом). Это способствует образованию тромбоцитарной пробки и запускает процесс свертывания крови. Остановка кровотечения за счет сосудисто-тромбоцитарного механизма гемостаза осуществляется следующим образом: при травме происходит спазм сосудов за счет рефлекторного сокращения (кратковременный первичный спазм) и действия биологически активных веществ на стенку сосудов (серотонина, адреналина, норадреналина), которые освобождаются из тромбоцитов и поврежденной ткани. Этот спазм вторичный и более продолжительный. Параллельно происходит формирование тромбоцитарной пробки, которая закрывает просвет поврежденного сосуда. В основе ее образования лежит способность тромбоцитов к адгезии и агрегации. Тромбоциты легко разрушаются и выделяют биологически активные вещества и тромбоцитарные факторы. Они способствуют спазму сосудов и запускают процесс свертывания крови, в результате которого образуется нерастворимый белок фибрин. Нити фибрина оплетают тромбоциты, и образуется фибрин-тромбоцитарная структура – тромбоцитарная пробка. Из тромбоцитов выделяется особый белок – тромбостеин, под влиянием которого происходит сокращение тромбоцитарной пробки и образуется тромбоцитарный тромб. Тромб прочно закрывает просвет сосуда, и кровотечение останавливается. Коагуляционный механизм гемостаза обеспечивает остановку кровотечения в более крупных сосудах (сосудах мышечного типа). Остановка кровотечения осуществляется за счет свертывания крови – гемокоагуляции. Процесс свертывания крови заключается в переходе растворимого белка плазмы крови фибриногена в нерастворимый белок фибрин. Кровь из жидкого состояния переходит в студнеобразное, образуется сгусток, который закрывает просвет сосуда. Сгусток состоит из фибрина и осевших форменных элементов крови – эритроцитов. Сгусток, прикрепленный к стенке сосуда, называется тромбом, он подвергается в дальнейшем ретракции (сокращению) и фибринолизу (растворению). В свертывании крови принимают участие факторы свертывания крови. Они содержатся в плазме крови, форменных элементах, тканях. Факторы свертывания крови В процессе свертывания крови принимают участие много факторов, они называются факторами свертывания крови, содержатся в плазме крови, форменных элементах и тканях. Плазменные факторы свертывания крови имеют наибольшее значение. Плазменные факторы свертывания крови – белки, большинство из которых ферменты. Они находятся в неактивном состоянии, синтезируются в печени и активируются в процессе свертывания крови. Существует пятнадцать плазменных факторов свертывания крови, основными из них являются следующие. I – фибриноген – белок, переходящий в фибрин под влиянием тромбина, участвует в агрегации тромбоцитов, необходим для репарации тканей. II – протромбин – гликопротеид, переходящий в тромбин под влиянием протромбиназы. IV – ионы Ca участвуют в образовании комплексов, входит в состав протромбиназы, связывает гепарин, способствует агрегации тромбоцитов, принимает участие в ретракции сгустка и тромбоцитарной пробки, тормозят фибринолиз. Дополнительными факторами, ускоряющими процесс свертывания крови, являются акцелераторы (с V по XIII факторы). VII – проконвертин – гликопротеид, принимающий участие в формировании протромбиназы по внешнему механизму; X – фактор Стюарта—Прауэра – гликопротеид, являющийся составной частью протромбиназы. XII – фактор Хагемана – белок, активируется отрицательно заряженными поверхностями, адреналином. Запускает внешний и внутренний механизм образования протромбиназы, а также механизм фибринолиза. Факторы клеточной поверхности: 1) тканевой активатор, индуцирующий свертывание крови; 2) прокоагулянтный фосфолипид, выполняющий функцию липидного компонента тканевого фактора; 3) тромбомодулин, связывающий тромбин на поверхности эндотелиальных клеток, активирует протеин С. Факторы свертывания крови форменных элементов. Эритроцитарные: 1) фосфолипидный фактор; 2) большое количество АДФ; 3) фибриназа. Лейкоцитарные – апопротеин III, значительно ускоряющий свертываемость крови, способствующий развитию распространенного внутрисосудистого свертывания крови. Тканевым фактором является тромбопластин, который содержится в коре головного мозга, в легких, в плаценте, эндотелии сосудов, способствует развитию распространенного внутрисосудистого свертывания крови. Фазы свертывания крови Свертывание крови – это сложный ферментативный, цепной (каскадный), матричный процесс, сущность которого состоит в переходе растворимого белка фибриногена в нерастворимый белок фибрин. Процесс называется каскадным, так как в ходе свертывания идет последовательная цепная активация факторов свертывания крови. Процесс является матричным, так как активация факторов гемокоагуляци происходит на матрице. Матрицей служат фосфолипиды мембран разрушенных тромбоцитов и обломки клеток тканей. Процесс свертывания крови происходит в три фазы. Сущность первой фазы состоит в активации X-фактора свертывания крови и образовании протромбиназы. Протромбиназа – это сложный комплекс, состоящий из активного X-фактора плазмы крови, активного V-фактора плазмы крови и третьего тромбоцитарного фактора. Активация X-фактора происходит двумя способами. Деление основано на источнике матриц, на которых происходит каскад ферментативных процессов. При внешнем механизме активации источником матриц является тканевый тромбопластин (фосфолипидные осколки клеточных мембран поврежденных тканей), при внутреннем – обнаженные коллагеновые волокна, фосфолипидные осколки клеточных мембран форменных элементов крови. Сущность второй фазы – образование активного протеолитического фермента тромбина из неактивного предшественника протромбина под влиянием протромбиназы. Для осуществления этой фазы необходимы ионы Ca. Сущность третьей фазы – переход растворимого белка плазмы крови фибриногена в нерастворимый фибрин. Эта фаза осуществляется три 3 стадии. 1. Протеолитическая. Тромбин обладает эстеразной активность и расщепляет фибриноген с образованием фибринмономеров. Катализатором этой стадии являются ионы Ca, II и IX протромбиновые факторы. 2. Физико-химическая, или полимеризационная, стадия. В ее основе лежит спонтанный самосборочный процесс, приводящий к агрегации фибрин-мономеров, который идет по принципу «бок в бок» или «конец в конец». Самосборка осуществляется путем формирования продольных и поперечных связей между фибринмономерами с образованием фибрин-полимера (фибрина-S) Волокна фибрина-S легко лизируются не только под влиянием плазмина, но и комплексных соединений, которые не обладают фибринолитической активностью. 3. Ферментативная. Происходит стабилизация фибрина в присутствии активного XIII фактора плазмы крови. Фибрин-S переходит в фибрин-I (нерастворимый фибрин). Фибрин-I прикрепляется к сосудистой стенке, образует сеть, где запутываются форменные элементы крови (эритроциты) и образуется красный кровяной тромб, который закрывает просвет поврежденного сосуда. В дальнейшем наблюдается ретракция кровяного тромба – нити фибрина сокращаются, тромб уплотняется, уменьшается в размерах, из него выдавливается сыворотка, богатая ферментом тромбином. Под влиянием тромбина фибриноген вновь переходит в фибрин, за счет этого тромб увеличивается в размерах, что способствует лучшей остановке кровотечения. Процессу ретракции тромба способствует тромбостенин – контрактивный белок кровяных пластинок и фибриноген плазмы крови. С течением времени тромб подвергается фибринолизу (или растворению). Ускорение процессов свертывания крови называется гиперкоагуляцией, а замедление – гипокоагуляцией. Физиология фибринолиза Система фибринолиза – ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью противоположна системе свертывания крови. Фибринолиз ограничивает распространение свертывания крови по сосудам, регулирует проницаемость сосудов, восстанавливает их проходимость и обеспечивает жидкое состояние крови в сосудистом русле. В состав системы фибринолиза входят следующие компоненты: 1) фибринолизин (плазмин). Находится в неактивном виде в крови в виде профибринолизина (плазминоген). Он расщепляет фибрин, фибриноген, некоторые плазменные факторы свертывания крови; 2) активаторы плазминогена (профибринолизина). Они относятся к глобулиновой фракции белков. Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин. Активаторы прямого действия – трипсин, урокиназа, кислая и щелочная фосфатаза. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Для его активации необходимы лизокиназа тканей, плазмы. Свойствами лизокиназы обладают некоторые бактерии. В тканях находятся тканевые активаторы, особенно много их содержится в матке, легких, щитовидной железе, простате; 3) ингибиторы фибринолиза (антиплазмины) – альбумины. Антиплазмины тормозят действие фермента фибринолизина и превращение профибринолизина в фибринолизин.
|
||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 413; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.231.197 (0.01 с.) |