Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ортогональные проекции геометрических объектов

Поиск

2.1. Комплексный чертеж точки (Эпюр Монжа)

Проецирование геометрического объекта (точки, линии или фигуры) на одну плоскость проекций не определяет его положения в пространстве (какой-либо проекции точки может соответствовать бесчисленное множество точек в пространстве) и не дает полного представления о нем. Поэтому принято использовать не одну, а две или три взаимно перпендикулярные плоскости проекций – горизонтальную , фронтальную и профильную . Две плоскости проекций делят пространство на 4 четверти (рис. 2.1 а), три плоскости – на 8 октантов (рис. 2.1 б).

Линии пересечения плоскостей проекций 0x, 0y, 0z называются осями проекций. Они аналогичны осям декартовой системы координат с той разницей, что ось 0x имеет положительное направление влево.

Рис. 2.1

Т.к. любой предмет можно рассматривать как множество точек, проецирование его на плоскость сводится к построению отдельных точек ему принадлежащих. Поэтому все базовые понятия и правила проецирования рассматриваются на примере построения точки.

Построим проекции точки А, расположенной в первом октанте пространства (рис.2.2). Для этого через точку проведем проецирующие лучи, идущие перпендикулярно плоскостям проекций. На пересечении этих лучей с плоскостями проекций находятся проекции самой точки А.

Рис. 2.2

Несмотря на наглядность пространственного изображения, работать с ним неудобно, т.к. горизонтальная и профильная плоскости проекций изображаются на нем с искажением. Удобнее совместить эти плоскости с фронтальной плоскостью проекций, развернув их на угол 90° вокруг осей проекций 0x и 0y. При этом ось 0y разворачивается как с горизонтальной, так и с фронтальной плоскостями проекций, поэтому на чертеже она обозначается дважды – 0y и 0y′.

Полученный таким образом чертеж называется комплексным чертежом (КЧ), или эпюром Монжа. В связи с тем, что он представляет собой развернутую в плоскость пространственную модель, самой точки на комплексном чертеже нет (рис. 2.3).


Проекции точки на КЧ соединяются между собой пря­мыми линиями, называющимися линиями связи и проходящими перпендикулярно осям проекций.

Независимо от того, в каком октанте находится точка, ее горизонтальная и фронтальная проекции всегда лежат на одной линии связи, перпендикулярной оси 0x, а фронтальная и профильная проекция – на линии связи, перпендикулярной оси 0z.

Рис. 2.3


Исходя из рисунка пространственной модели (рис. 2.2) можно выявить взаимосвязь между проекциями точки А:

1) расстояние от точки А до горизонтальной плоскости проекций (высота точки)

;

2) расстояние от точки А до фронтальной плоскости проекций (глубина точки)

;

3) расстояние от точки А до профильной плоскости проекций (широта точки)

.

Например, расстояние от фронтальной проекции точки до оси 0x равно расстоянию от профильной проекции до оси 0y. Следовательно, по двум любым проекциям точки можно построить третью.

Точки могут занимать частное положение в пространстве относительно плоскостей проекций:

1) если точка расположена на оси проекций, то две ее проекции лежат на этой оси, а третья находится в начале координат;

2) если точка лежит на плоскости проекций, тогда одна из ее проекций лежит в этой плоскости, а две другие – на осях проекций.

Допустим, что точка В лежит на оси 0z, а точка С принадлежит горизонтальной плоскости проекций (рис. 2.4). Для точки С построения следует начинать с проекции, принадлежащей плоскости , для точки В – с проекций и , лежащих на осях проекций.

Рис. 2.4

Лекция 2

Проецирование прямой

Рис. 2.5

Аксиома евклидовой геометрии гласит: «Через две точки проходит единственная прямая». В связи с этим построение проекций прямой линии на КЧ сводится к построению проекций двух точек ей принадлежащих.


Построим проекции прямой d, которой принадлежат точки А и В. Спроецировав их на плоскости проекций, а затем соединив между собой одноименные проекции, получаем проекции прямой (рис.2.5).

 

Рис. 2.6


На КЧ прямая может быть задана проекциями двух точек (отрезком) или, на основании инвариантного свойства 2[1], непосредственно своими проекциями (рис. 2.5 б, 2.6).



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 387; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.107.11 (0.005 с.)