Элементы теории Лобачевского. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Элементы теории Лобачевского.



Исходным пунктом геометрии Лобачевского является принятие всех предложений геометрии Евклида, не зависящих от 5-го постулата (то есть абсолютной геометрии, включая аксиомы Паша, Архимеда, Дедекинда), и присоединение к ним взамен отброшенного 5-го постулата следующей аксиомы, противоположной аксиоме Плейфера, а значит, и 5-му постулату.

Через точку, лежащую вне прямой в плоскости, определяемой ими, можно провести не менее двух прямых, не пересекающих данной прямой.

Заметим, что существование хотя бы одной прямой, проходящей через данную точку и не пересекающей данной прямой, есть факт абсолютной геометрии. Аксиома Лобачевского утверждает существование по крайней мере двух таких прямых. Отсюда немедленно следует, что таких прямых существует бесконечное множество.

Плоскость, в которой предполагается выполнение аксиомы Лобачевского, называется плоскостью Лобачевского.

Заметим также, что геометрию Лобачевского называют гиперболической геометрией, в соответствии с чем плоскость и пространство Лобачевского называются гиперболическими.

Основная теорема.

Пусть в плоскости даны прямая a и не лежащая на ней точка A. Тогда в пучке прямых с центром в точке A существуют две пограничные прямые, разделяющие все прямые пучка на два класса: на класс прямых, пересекающих a, и класс прямых, не пересекающих a. Эти граничные прямые сами не пересекают a.

Рис.7

Всё сказанное приводит нас к следующей картине расположения прямых пучка с центром в точке A, взятой вне данной прямой BB'. В этом пучке существуют две граничные прямые CC' и DD' (рис.7), симметрично расположенные относительно перпендикуляра AP, опущенного из точки A на BB', и образующие с ним ےCAP=ےD'AP=α< .

Эти прямые, а также все прямые пучка, проходящие внутри заштрихованных вертикальных углов CAD и C'AD', не пересекают прямой BB', а все прямые пучка, проходящие внутри вертикальных углов CAD' и C'AD, пересекают BB'.

Две граничные прямые CC' и DD' называются параллельными прямой BB' в точке A, причём прямая C'C называется параллельной B'B в направлении B'B, а прямая DD' называется параллельной прямой BB' в направлении BB'. Острый угол α, образуемый параллельными с перпендикуляром AP, называется углом параллельности в точке A относительно прямой BB'. Этот угол есть функция длины p перпендикуляра AP и обозначается так: α=П(p). AP называется отрезком параллельности в точке A относительно прямой BB'.

Основная формула геометрии Лобачевского, устанавливающая зависимость между длиной отрезка и отвечающим ему углом параллельности, имеет вид:

Все прямые пучка, не пересекающие BB' и лежащие внутри заштрихованных вертикальных углов, называются расходящимися с BB' или сверхпараллельными к BB'; угол, образуемый такой прямой с перпендикуляром AP с обеих от него сторон, больше угла параллельности α.

Наконец, все остальные прямые пучка, образующие с AP с какой-либо стороны острый угол, меньший угла параллельности α, называются пересекающими прямую BB' или сходящимися с BB'.

Определение. Прямая C'C называется параллельной прямой B'B в направлении B'B (рис.8) в точке A, если, во-первых, прямая C'C не пересекает прямой BB', во-вторых, C'C является граничной в пучке прямых с центром в точке A, то есть всякий луч AE, проходящий внутри угла CAD, где D – любая точка прямой BB', пересекающей луч DB.

Рис.8

Пространство, в которой предполагается выполнение аксиомы Лобачевского, называется пространством Лобачевского.

В пространстве Лобачевского параллельность и расходимость прямых, а также прямой и плоскости, определяется следующим образом:

Определение. Две прямые в пространстве называются параллельными (расходящимися), если они лежат в одной плоскости и в этой плоскости они параллельны (расходятся).

Определение. Прямая a называется параллельной плоскости α, если она параллельна своей проекции на эту плоскость.

Определение. Прямая a называется расходящейся с плоскостью α, если она расходится со своей проекцией на эту плоскость.

Из последних определений немедленно следует, что прямая, параллельная плоскости, неограниченно сближается с последней в сторону параллельности, а прямая, расходящаяся с плоскостью, имеет с этой плоскостью единственный общий перпендикуляр, в обе стороны от которого в проектирующей плоскости прямая неограниченно удаляется от плоскости.

Взаимное расположение прямых и плоскостей в пространстве Лобачевского вполне характеризуется при помощи так называемого конуса параллельности, являющегося аналогом понятия угла параллельности.

Рис.9

Пусть дана плоскость α и не лежащая на ней точка A (рис. 9). Пусть AA' – перпендикуляр к α, проектирующий точку A в точку A' на плоскости α. Пусть далее AB – прямая, параллельная плоскости α, и A'B' – её проекция на α. Тогда угол BAA' есть угол параллельности в точке A прямой AB относительно прямой A'B'. Будем вращать прямую AB около перпендикуляра AA', тогда AB опишет круглую коническую поверхность с вершиной в точке A, все образующие которой параллельны плоскости α. Эта поверхность называется конусом параллельности в точке A относительно плоскости α. Таким образом, конусом параллельности в точке A относительно плоскости α называется геометрическое место всевозможных прямых, параллельных плоскости α в точке A.

Из этого определения ясно, что всякая прямая, проходящая через точку A и лежащая внутри конуса параллельности, пересекает плоскость α, а всякая прямая, проходящая через точку A и лежащая вне конуса параллельности, расходится с плоскостью α.

Конус параллельности в точке A позволяет все плоскости, проходящие через точку A, разбить на три категории:

1) плоскости, пересекающие конус по двум образующим,

2) плоскости, касающиеся конуса по образующей,

3) плоскости, имеющие с конусом лишь одну общую точку A.

Плоскости 1-й категории содержат прямые, проходящие через A и лежащие внутри конуса параллельности, а потому эти плоскости пересекают плоскость α. При этом прямая пересечения с плоскостью α параллельна в противоположных направлениях проекциям образующих, по которым плоскость 1-й категории пересекает конус параллельности. Плоскости 2-й и 3-й категории не содержат прямых, проходящих внутри конуса параллельности, а потому не могут пересекаться с плоскостью α.

Определение. Плоскость, проходящая через точку A, называется сходящейся с плоскостью α, параллельной плоскости α, или расходящейся с плоскостью α, смотря по тому, будет ли эта плоскость пересекать конус параллельности в точке A по паре образующих, или будет касаться конуса по образующей, или не будет иметь с конусом общих прямых.

В плоскости Лобачевского через точку, лежащую вне прямой, проходят две прямые, параллельные данной. В пространстве Лобачевского через точку, лежащую вне плоскости, можно провести бесконечное множество прямых, параллельных данной плоскости, это и будут образующие конуса параллельности.

Аксиоматический метод.

Аксиоматический метод появился в Древней Греции, а сейчас применяется во всех теоретических науках, прежде всего в математике.

Аксиоматический метод построения научной теории заключается в следующем: выделяются основные понятия, формулируются аксиомы теории, а все остальные утверждения выводятся логическим путём, опираясь на них.

Основные понятия выделяются следующим образом. Известно, что одно понятие должно разъясняться с помощью других, которые, в свою очередь, тоже определяются с помощью каких-то известных понятий. Таким образом, мы приходим к элементарным понятиям, которые нельзя определить через другие. Эти понятия и называются основными.

Когда мы доказываем утверждение, теорему, то опираемся на предпосылки, которые считаются уже доказанными. Но эти предпосылки тоже доказывались, их нужно было обосновать. В конце концов, мы приходим к недоказываемым утверждениям и принимаем их без доказательства. Эти утверждения называются аксиомами. Набор аксиом должен быть таким, чтобы, опираясь на него, можно было доказать дальнейшие утверждения.

Выделив основные понятия и сформулировав аксиомы, далее мы выводим теоремы и другие понятия логическим путём. В этом и заключается логическое строение геометрии. Аксиомы и основные понятия составляют основания планиметрии.

Так как нельзя дать единое определение основных понятий для всех геометрий, то основные понятия геометрии следует определить как объекты любой природы, удовлетворяющие аксиомам этой геометрии. Таким образом, при аксиоматическом построении геометрической системы мы исходим из некоторой системы аксиом, или аксиоматики. В этих аксиомах описываются свойства основных понятий геометрической системы, и мы можем представить основные понятия в виде объектов любой природы, которые обладают свойствами, указанными в аксиомах.

После формулировки и доказательства первых геометрических утверждений становится возможным доказывать одни утверждения (теоремы) с помощью других. Доказательства многих теорем приписываются Пифагору и Демокриту. Гиппократу Хиосскому приписывается составление первого систематического курса геометрии, основанного на определениях и аксиомах. Этот курс и его последующие обработки назывались "Элементы".

 

 



Поделиться:


Последнее изменение этой страницы: 2016-04-21; просмотров: 276; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.172.115 (0.008 с.)