Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Закон ома для участка цепи гласит: ток прямо пропорционален напряжению и обратно пропорционален сопротивлению.Содержание книги
Поиск на нашем сайте
закон Ома для полной цепи: сила тока в полной цепи равна электродвижущей силе источника, деленной на сумму сопротивлений однородного и неоднородного участков цепи. Электри́ческое сопротивле́ние — физическая величина, характеризующая свойства проводника препятствовать прохождениюэлектрического тока и равная отношению напряжения на концах проводника к силе тока, протекающего по нему[1]. Сопротивление для цепей переменного тока и для переменных электромагнитных полей описывается понятиями импеданса иволнового сопротивления. Сопротивлением (резистором) также называют радиодеталь, предназначенную для введения в электрические цепи активного сопротивления. Сопротивление (часто обозначается буквой R или r) считается, в определённых пределах, постоянной величиной для данного проводника; её можно рассчитать как
где R — сопротивление, Ом; U — разность электрических потенциалов (напряжение) на концах проводника, В; I — сила тока, протекающего между концами проводника под действием разности потенциалов, А. Электри́ческая проводи́мость (электропроводность, проводимость) — способность тела проводить электрический ток, а такжефизическая величина, характеризующая эту способность и обратная электрическому сопротивлению[1]. В Международной системе единиц (СИ) единицей измерения электрической проводимости является сименс (русское обозначение: См; международное: S), определяемый как 1 См = 1 Ом-1, то есть, как электрическая проводимость участка электрической цепи сопротивлением 1 Ом[ Сверхпроводник — материал, электрическое сопротивление которого при понижении температуры до некоторой величины Tc понижается до нуля Ом. При этом говорят, что материал приобретает «сверхпроводящие свойства» или переходит в «сверхпроводящее состояние». В настоящее время проводятся исследования в области сверхпроводимости с целью повышения температуры Tc до комнатной температуры. Электри́ческая мо́щность — физическая величина, характеризующая скорость передачи или преобразования электрической энергии. Закон джоуля-ленца Мощность тепла, выделяемого в единице объёма среды при протекании постоянного электрического тока, пропорциональна произведению плотности электрического тока на величину напряженности электрического поля Математически может быть выражен в следующей форме:
где Вопрос №47 Электронная эмиссия — явление испускания электронов из твёрдых тел или жидкостей. Типы эмиссии[править | править вики-текст] · Термоэлектронная эмиссия Электронную эмиссию, возникающую в результате нагрева, называют термоэлектронной эмиссией (ТЭ). Явление ТЭ широко используют в вакуумных и газонаполняемых приборах. · Электростатическая или Автоэлектронная эмиссия Электростатической (автоэлектронной эмиссией) называют эмиссию электронов, обусловленную наличием у поверхности тела сильного электрического поля. Дополнительная энергия электронам твёрдого тела при этом не сообщается, но за счёт изменения формы потенциального барьера они приобретают способность выходить в вакуум. · Фотоэлектронная эмиссия Фотоэлектронная эмиссия (ФЭ) или внешний фотоэффект — эмиссия электронов из вещества под действием падающего на его поверхность излучения. ФЭ объясняется на основе квантовой теории твёрдого тела и зонной теории твёрдого тела. · Вторичная электронная эмиссия Испускание электронов поверхностью твёрдого тела при её бомбардировке электронами. · Ионно-электронная эмиссия Испускание электронов металлом при его бомбардировке ионами. · Взрывная электронная эмиссия Испускание электронов в результате локальных взрывов микроскопических областей эмиттера. · Криогенная электронная эмиссия Испускания электронов ультрахолодными, охлаждёнными до криогенных температур поверхностями. Мало изученное явление. Электро́нная ла́мпа, радиола́мпа — электровакуумный прибор (точнее, вакуумный электронный прибор), работающий за счёт управления интенсивностью потока электронов, движущихся в вакууме или разрежённом газе между электродами. Радиолампы массово использовались в ХХ веке как активные элементы электронной аппаратуры (усилители, генераторы, детекторы, переключатели и т. п.). В настоящее время практически полностью вытеснены полупроводниковыми приборами. Иногда ещё применяются в мощных высокочастотных передатчиках и аудиотехнике. Электронные лампы, предназначенные для освещения (лампы-вспышки, ксеноновые лампы, ртутные и натриевые лампы), радиолампами не называются и обычно относятся к классу осветительных приборов.
ЭЛЕКТРИЧЕСКИЙ ТОК В ГАЗАХ
В обычных условиях газ - это диэлектрик, т.е. он состоит из нейтральных атомов и молекул и не содержит свободных носителей эл.тока. Воздух является диэлектриком в линиях электропередач, в воздушных конденсаторах, в контактных выключателях. Воздух является проводником при возникновении молнии, электрической искры, при возникновении сварочной дуги.
- это распад нейтральных атомов или молекул на положительные ионы и электроны путем отрыва электронов от атомов. Ионизация происходит при нагревании газа или воздействия излучений (УФ, рентген, радиоактивное) и объясняется распадом атомов и молекул при столкновениях на высоких скоростях.
- это эл.ток в ионизированных газах.
Рекомбинация заряженных частиц
Существует самостоятельный и несамостоятельный газовый разряд. Несамостоятельный газовый разряд - если действие ионизатора прекратить, то прекратится и разряд. Когда разряд достигает насыщения - график становится горизонтальным. Здесь электропроводность газа вызвана лишь действием ионизатора. Самостоятельный газовый разряд - в этом случае газовый разряд продолжается и после прекращения действия внешнего ионизатора за счет ионов и электронов, возникших в результате ударной ионизации (= ионизации эл. удара); возникает при увеличении разности потенциалов между электродами (возникает электронная лавина). Электрический пробой газа - процесс перехода несамостоятельного газового разряда в самостоятельный. Вопрос №48 Полупроводни́к — материал, который по своей удельной проводимости занимает промежуточное место между проводниками и диэлектрикамии отличается от проводников сильной зависимостью удельной проводимости от концентрации примесей, температуры и воздействия различных видов излучения. Основным свойством полупроводника является увеличение электрической проводимости с ростом температуры[1]. Полупроводниками являются вещества, ширина запрещённой зоны которых составляет порядка нескольких электрон-вольт (эВ). Например,алмаз можно отнести к широкозонным полупроводникам, а арсенид индия — к узкозонным. К числу полупроводников относятся многие химические элементы (германий, кремний, селен, теллур, мышьяк и другие), огромное количество сплавов и химических соединений (арсенид галлия и др.). Почти все неорганические вещества окружающего нас мира — полупроводники. Самым распространённым в природе полупроводником является кремний, составляющий почти 30 % земной коры. Собственная проводимость Полупроводники, в которых свободные электроны и «дырки» появляются в процессе ионизации атомов, из которых построен весь кристалл, называют полупроводниками с собственной проводимостью. В полупроводниках с собственной проводимостью концентрация свободных электронов равняется концентрации «дырок». Проводимость связана с подвижностью частиц следующим соотношением:
где Для собственного полупроводника концентрации носителей совпадают и формула принимает вид:
Примесная проводимость Для создания полупроводниковых приборов часто используют кристаллы с примесной проводимостью. Такие кристаллы изготавливаются с помощью внесения примесей с атомами трехвалентного или пятивалентного химического элемента.
p-n -перехо́д (n — negative — отрицательный, электронный, p — positive — положительный, дырочный), или электронно-дырочный переход — область соприкосновения двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому. Электрические процессы в p-n-переходах являются основой работы полупроводниковых диодов, транзисторов и других электронных полупроводниковых приборов с нелинейной вольт-амперной характеристикой. ВАХ диода
Пограничная область раздела полупроводников с разными типами проводимости- запирающий слой
|
||||
|
Последнее изменение этой страницы: 2016-04-20; просмотров: 496; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.220 (0.008 с.) |