Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Основные этапы геологической истории Земли

Поиск

 

Прежде чем перейти к рассмотрению развития органического мира, ознакомимся с основными этапами геологической истории Земли.

Геологическая история Земли подразделяется на крупные промежутки — эры; эры — на периоды, периоды — на века. Разделение на эры, периоды и века, конечно же, относительное, потому что резких разграничений между этими подразделениями не было. Но все же именно на рубеже соседних эр, периодов преимущественно происходили существенные геологические преобразования: горообразовательные процессы, перераспределение суши и моря, смена климата и проч. Кроме того, каждое подразделение характеризовалось качественным своеобразием флоры и фауны.

 

Геологические эры Земли:

катархей (от образования Земли 5 млрд лет назад до зарождения жизни);

архей, древнейшая эра (3,5 млрд — 2,6 млрд лет);

протерозой (2,6 млрд — 570 млн лет);

палеозой (570 млн — 230 млн лет) со следующими периодами:

кембрий (570 млн — 500 млн лет);

ордовик (500 млн — 440 млн лет);

силур (440 млн — 410 млн лет);

девон (410 млн — 350 млн лет);

карбон (350 млн — 285 млн лет);

пермь (285 млн — 230 млн лет);

мезозой (230 млн — 67 млн лет) со следующими периодами:

триас (230 млн — 195 млн лет);

юра (195 млн — 137 млн лет);

мел (137 млн — 67 млн лет);

кайнозой (67 млн — до нашего времени) со следующими периодами и веками:

палеоген (67 млн — 27 млн лет):

палеоцен (67—54 млн лет)

эоцен (54—38 млн лет)

олигоцен (38—27 млн лет)

неоген (27 млн — 3 млн лет):

миоцен (27—8 млн лет)

плиоцен (8—3 млн лет)

четвертичный (3 млн — наше время):

плейстоцен (3 млн — 20 тыс. лет)

голоцен (20 тыс. лет — наше время)

 

Начальные этапы эволюции жизни

 

Более 3,5 млрд лет назад на дне мелководных, теплых и богатых питательными веществами морей, водоемов возникла жизнь в виде мельчайших примитивных существ. Первый период развития органического мира на Земле характеризуется тем, что первичные живые организмы были анаэробными (жили без кислорода), питались и воспроизводились за счет «органического бульона», возникшего из неорганических систем; иначе говоря, они питались готовыми органическими веществами, синтезированными в ходе химической эволюции, т.е. были гетеротрофами. Но это не могло длиться долго, ведь такой резерв органического вещества быстро убывал.

Первый великий качественный переход в эволюции живой материи был связан с «энергетическим кризисом»: «органический бульон» был исчерпан и следовало выработать способы формирования крупных молекул биохимическим путем, внутри клеток, с помощью ферментов. В этой ситуации преимущество было у тех клеток, которые могли получать большую часть необходимой им энергии непосредственно из солнечного излучения.

Такой переход вполне возможен, так как некоторые простые соединения обладают способностью поглощать свет, если они включают в свой состав атом магния (как в хлорофилле). Уловленная таким образом световая энергия может быть использована для усиления реакций обмена, в частности, для образования органических соединений, которые могут сначала накапливаться, а затем расщепляться с высвобождением энергии. На этом пути и шел процесс образования хлорофилла и фотосинтеза. Фотосинтез обеспечивает организму получение необходимой энергии от Солнца и вместе с тем независимость от внешних питательных веществ. Такие организмы называются автотрофными. Это значит, что их питание осуществляется внутренним путем благодаря световой энергии. При этом, разумеется, поглощаются из внешней среды и некоторые вещества — вода, углекислый газ, минеральные соединения. Первыми фотосинтетиками на нашей планете были, видимо, цианеи, а затем зеленые водоросли. Остатки их находят в породах архейского возраста (около 3 млрд лет назад). В протерозое в морях обитало много разных представителей зеленых и золотистых водорослей. В это же время, видимо, появились первые прикрепленные ко дну водоросли.

Переход к фотосинтезу и автотрофному питанию был великим революционным переворотом в эволюции живого. Значительно увеличилась биомасса Земли. В результате фотосинтеза кислород уже в значительных количествах стал выделяться в атмосферу. Первичная атмосфера Земли не содержала свободного кислорода, и для анаэробных организмов он был ядом. Потому многие одноклеточные анаэробные организмы погибли в «кислородной катастрофе»; другие укрылись в болотах, где не было свободного кислорода, и, питаясь, выделяли не кислород, а метан. Третьи приспособились к кислороду, получив огромное преимущество в способности запасать энергию (аэробные клетки выделяют энергии в 10 раз больше, чем анаэробные). Благодаря фотосинтезу в органическом веществе Земли накапливалось все больше и больше энергии солнечного света, что способствовало ускорению биологического круговорота веществ и ускорению эволюции в целом.

Переход к фотосинтезу потребовал много времени. Он завершился примерно 1,8 млрд лет назад и привел к важным преобразованиям на Земле: первичная атмосфера земли сменилась вторичной, кислородной; возник озоновый слой, который сократил воздействие ультрафиолетовых лучей, а значит, и прекратил производство нового «органического бульона»; изменился состав морской воды, он стал менее кислотным. Таким образом, современные условия на Земле в значительной мере были созданы жизнедеятельностью организмов.

С «кислородной революцией» связан и переход от прокариотов к эукариотам. Первые организмы были прокариотами. Это были такие клетки, у которых не было ядра, деление клетки не включало в себя точной дупликации генетического материала (ДНК), через оболочку клетки поступали только отдельные молекулы. Прокариоты — это простые, выносливые организмы, обладавшие высокой вариабельностью, способностью к быстрому размножению, легко, приспосабливающиеся к изменяющимся условиям природной среды. Но новая кислородная среда стабилизировалась; первичная атмосфера была заменена новой. Понадобились организмы, которые пусть были бы и не вариабельны, но зато лучше приспособлены к новым условиям. Нужна была не генетическая гибкость, а генетическая стабильность. Ответом на эту потребность и явилось формирование эукариотов примерно 1,8 млрд лет назад.

У эукариотов ДНК уже собрана в хромосомы, а хромосомы сосредоточены в ядре клетки. Такая клетка воспроизводится без каких-либо существенных изменений. Это значит, что в неизменной природной среде «дочерние» клетки имеют столько же шансов на выживание, сколько их имела клетка «материнская».

 

Образование царства растений и царства животных

 

Дальнейшая эволюция эукариотов была связана с разделением на растительные и животные клетки. Это разделение произошло еще в протерозое, когда мир был заселен одноклеточными организмами.

Растительные клетки покрыты жесткой целлюлозной оболочкой, которая их защищает. Но одновременно такая оболочка не дает им возможности свободно перемещаться и получать пищу в процессе передвижения. Вместо этого растительные клетки совершенствуются в направлении использования фотосинтеза для накопления питательных веществ.

С самого начала своей эволюции растения развивались двояким образом — в них параллельно существовали группы с автотрофным и гетеротрофным питанием. Это способствовало усилению целостности растительного мира, его относительной автономности: ведь две эти группы взаимодополняли друг друга в круговороте веществ.

Животные клетки имеют эластичные оболочки и потому не теряют способности к передвижению; это дает им возможность самим искать пищу — растительные клетки или другие животные клетки. Животные клетки эволюционировали в направлении совершенствования способов передвижения и способов поглощать и выделять крупные частицы (а не отдельные органические молекулы) через оболочку. Сначала крупные органические фрагменты, затем куски мертвой ткани и разлагающиеся остатки живого, и наконец, поедание и переваривание целых клеток (формирование первых хищников). С появлением хищников естественный отбор резко ускоряется.

Следующим важным этапом развития жизни и усложнения ее форм было возникновение примерно 900 млн лет назад полового размножения. Половое размножение состоит в механизме слияния ДНК двух индивидов и последующего перераспределения генетического материала, при котором потомство похоже на родителей, но не идентично им. Достоинство полового размножения в том, что оно значительно повышает видовое разнообразие и резко ускоряет эволюцию, позволяя быстрее и эффективнее приспосабливаться к изменениям окружающей среды.

Значительным шагом в дальнейшем усложнении организации живых существ было появление примерно 700—800 млн лет назад многоклеточных организмов с дифференцированным телом, развитыми тканями, органами, которые выполняли определенные функции. Первые многоклеточные животные представлены сразу несколькими типами: губки, кишечнополостные, плеченогие, членистоногие. Многоклеточные происходят от колониальных форм одноклеточных жгутиковых. Эволюция многоклеточных шла в направлении совершенствования способов передвижения, лучшей координации деятельности клеток, совершенствования форм отражения с учетом предыдущего опыта, образования вторичной полости, совершенствования способов дыхания и др.

В протерозое и в начале палеозоя растения населяют в основном моря. Среди прикрепленных ко дну встречаются зеленые и бурые водоросли, а в толще воды — золотистые, красные и другие водоросли.

В кембрийских морях уже существовали почти все основные типы животных, которые впоследствии лишь специализировались и совершенствовались. Облик морской фауны определяли многочисленные ракообразные, губки, кораллы, иглокожие, разнообразные моллюски, плеченогие, трилобиты. В теплых и мелководных морях ордовика обитали многочисленные кораллы, значительного развития достигли головоногие моллюски — существа, похожие на современных кальмаров, длиной несколько метров. В конце ордовика в море появляются крупные плотоядные, достигавшие 10—11 м в длину. В ордовике, примерно 500 млн лет назад появляются и первые животные, имеющие скелеты, позвоночные. Это было значительной вехой в истории жизни на Земле.

Первые позвоночные, по-видимому, возникли в мелководных пресных водоемах, и уже затем эти пресноводные формы завоевывают моря и океаны. Первые позвоночные — мелкие (около 10 см длиной) существа, бесчелюстные рыбообразные, покрытые чешуей, которая помогала защищаться от крупных хищников (осьминогов, кальмаров). Дальнейшая эволюция позвоночных шла в направлении образования челюстных рыбообразных, которые быстро вытеснили большинство бесчелюстных. В девоне возникают и двоякодышащие рыбы, которые были приспособлены к дыханию в воде, но обладали и легкими.

Как известно, современные рыбы подразделяются на два больших класса: хрящевые, и костистые. К хрящевым относятся акулы и скаты*. Костистые рыбы представляют собой наиболее многочисленную группу рыб, в настоящее время преобладающую в морях, океанах, реках, озерах. Некоторые пресноводные двоякодышащие рыбы девонского периода, очевидно, и дали жизнь сначала первичным земноводным (стегоцефалам), а затем и сухопутным позвоночным, Таким образом, первые амфибии появляются в девоне. В девоне возникает и другая чрезвычайно прогрессивная группа животных — насекомые.

* В настоящее время интерес к акулам в массовом сознании «подогревается» и рассказами об их нападениях на людей, и серией фантастических фильмов «Челюсти». Акулы, действительно, обладают сложной системой поведения, прекрасным обонянием и электромагнитной системой ориентации. Акулы — очень древние животные; они появились еще в девоне и с тех пор некоторые их виды не изменились.

 

Образование насекомых свидетельствовало о том, что в ходе эволюции сложилось два разных способа решения задач укрепления каркаса тела (основных несущих органов и всего тела в целом) и совершенствования форм отражения. У позвоночных роль каркаса играет внутренний скелет, у высших форм беспозвоночных — насекомых — наружный. Что касается форм отражения, то у насекомых чрезвычайно сложная нервная система, с разбросанными по всему телу огромными и относительно самостоятельными нервными центрами, преобладание врожденных реакций над приобретенными. У позвоночных — развитие головного мозга и преобладание условных рефлексов над безусловными. Различие этих двух разных способов решения важнейших эволюционных задач в полной мере проявилось после перехода к жизни на суше.

 

Завоевание суши

 

Важнейшим событием в эволюции форм живого являлся выход растений и живых существ из воды и последующее образование большого многообразия наземных растений и животных. Из них в дальнейшем и происходят высокоорганизованные формы жизни.

Переход к жизни в воздушной среде требовал многих изменений. Во-первых, вес тел здесь больше, чем в воде. Во-вторых, в воздухе не содержится питательных веществ. В-третьих, воздух сухой, он иначе, чем вода, пропускает через себя свет и звук. Кроме того, содержание кислорода в воздухе выше, чем в воде. Выход на сушу предполагал выработку соответствующих приспособлений.

По-видимому, еще в протерозое на поверхности суши в результате взаимодействия абиотических (минералы, климатические факторы) и биотических (бактерии, цианеи) условий возникает почва. Почвообразовательные процессы в протерозое подготовили условия для выхода на сушу растений, а затем и животных.

Выход растений на сушу начался, очевидно, в конце силура. Растения, переселявшиеся в воздушную среду, получали значительные эволюционные преимущества. И главное из них — то, что солнечной энергии здесь больше, чем в воде, а значит, и фотосинтез становится более совершенным. Проблема высыхания решалась посредством формирования водонепроницаемой внешней оболочки, пропитанной восковидными веществами. А перестройка системы питания из почвы требовала развития корневой системы и системы транспортировки питательных веществ и воды по организму. Корни способствовали также укреплению опоры. А по мере роста размеров растений формировалась и поддерживающая ткань — древесина. Жизнь на суше требовала и изменения репродуктивной системы.

Первые наземные растения — псилофиты; они занимали промежуточное положение между наземными сосудистыми растениями и водорослями. У псилофитов образуются сосудистая система, перестраиваются покровные ткани, появляются примитивные листья. Именно псилофиты в конце силура покрывали сплошным зеленым ковром прибрежные участки суши. Кстати, только в силуре началось сплошное озеленение Земли. После кислородной революции и до появления первой растительности поверхность Земли была красной — результат коррозии минералов железа.

Вслед за растениями из воды на сушу и воздух (сначала по берегам рек, озер, болот) последовали различные виды членистоногих — предки насекомых, пауков и скорпионов. Первые обитатели суши напоминали по виду современных скорпионов. И если первые амфибии появились в девоне, то активное завоевание суши позвоночными началось в карбоне. Первые полностью приспособившиеся к жизни на суше позвоночные — рептилии. Яйца рептилий были покрыты твердой скорлупой, не боялись высыхания, были снабжены пищей и кислородом для эмбриона. Первые рептилии были небольшими животными, напоминающими ныне живущих ящериц. В карбоне значительного развития достигают насекомые. Появляются летающие насекомые,

Рассмотрим основные пути исторического развития основных наземных групп органического мира Земли — царства животных и царства растений.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 985; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.140.185.194 (0.011 с.)