Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Работа биполярного транзистора.Содержание книги
Поиск на нашем сайте
При изготовлении транзистора в слоях делают различную концентрацию основных носителей, причем в крайних слоях, т.е. в эмиттере и коллекторе концентрация значительно выше, чем в среднем слое (базе). Учитывая указанную особенность построения транзистора, рассмотрим его работу при включении с общей базой. К переходу база-эмиттер подключим источник напряжения смещающий его в обратном направлении, а коллектор оставим не подключенным (рис.21).
При этом получим, что ток эмиттера равен току базы и равен тепловому току обратносмещенного p-n перехода. Величина этого тока очень мала. Так как коллектор никуда не подключен, то в базово-коллекторной цепи ток тоже будет отсутствовать. Если же к базово-эмиттерному переходу подключить прямосмещающее напряжение, т.е. изменить полярность источника напряжения в базово-эмиттерной цепи, то по указанному контуру будет протекать ток, определяемый этим напряжением и концентрацией основных носителей в базе. Однако концентрация основных носителей в эмиттере значительно выше, а такое включение источника напряжения создает условия инжектирования основных носителей (электронов) из эмиттера в базу, то в базе накапливается заряд неосновных носителей, определяемый инжектированными из эмиттера электронами. Величина этого заряда в основном определяется концентрацией основных носителей в эмиттере. Совершенно другая картина при подключении источника напряжения к коллекторно-базовому переходу, как показано на рис.25.
Такое включение приводит к обратному смещению базово-коллекторного перехода, но неосновные носители, инжектированные в базу, получают возможность свободного прохождения в коллектор транзистора. Поэтому после накопления определенного заряда неосновных носителей в базе избыточные электроны свободно втягиваются в коллектор и формируют ток коллектора. Большая разница в концентрациях основных носителей приводит к тому, что и . Учитывая, что транзистор можно представить точкой соединения, в которой должен выполняться первый закон Кирхгофа получаем , т.е. ток эмиттера отличается от тока коллектора на величину тока базы. Зависимость тока эмиттера от тока коллектора определяется соотношением , где — коэффициент передачи эмиттерного тока в цепь коллектора при нормальном включении, — тепловой ток обратно смещенного базово-коллекторного перехода.
Если транзистор работает, как описано, то такой режим называют нормальным линейным (усилительным) режимом. Если к обоим переходам подводятся обратные напряжения, то по переходам протекают незначительные обратные токи и такой режим называют режимом отсечки. Если к эмиттерному переходу подводится обратное напряжение, а к коллекторному — прямое, то эмиттер и коллектор меняются местами и такой режим называют инверсным. Лекция 5 Характеристики биполярных транзисторов. Для правильного использования транзисторов помимо знания принципов их работы необходимо знание их характеристик. Полностью охарактеризовать биполярный транзистор можно двумя видами характеристик: статическими и динамическими (частотными). Статические характеристики. Под статическими характеристиками будем понимать зависимости между переменными и параметрами биполярного транзистора на постоянном токе. Такими зависимостями являются: Iэ=f(Uбэ, Uкб), Iк=f(Uкб, Iэ) — для схемы включения с общей базой и Iб=f(Uбэ, Uкэ), Iк=f(Uкэ, Iб) — для схемы включения с общим эмиттером. Функции Iэ и Iб называют входными, а Iк — выходными характеристиками.
При снятии входной характеристики в схеме с общей базой для получения истинной зависимости вывод коллектора транзистора нужно оставить не подключенным. Это связано с тем, что миллиамперметр необходимо включать в цепь эмиттера, так как ток эмиттера почти равен току коллектора. При подключении к коллекторному выводу источника напряжения будет сформирован ток коллектора, значительно превышающий входной ток и миллиамперметр покажет именно его. При отключенном коллекторе снимаем вольтамперную характеристику базово-эмиттерного перехода и она имеет такой же вид, как и ВАХ перехода диода. Существенное отличие ВАХ базово - эмиттерного перехода от ВАХ диода состоит в том, что из-за малой толщины слоя базы обратное напряжение перехода значительно ниже и составляет единицы вольт.
При снятии входной характеристики в схеме с общим эмиттером миллиамперметр нужно включать в цепь базы, и он будет показывать входной ток даже при подключении источника напряжения к выводу коллектора. На полученных характеристиках видно одно из проявлений эффекта Эрли, состоящее в том, зависимость тока базы от напряжения база-эмиттер изменяется в зависимости от напряжения на коллекторе. Увеличение напряжения на коллекторе приводит к уменьшению тока базы при сохранения неизменным напряжения база-эмиттер. Другой важной статической характеристикой является зависимость тока коллектора от напряжения коллектор-база (в схеме включения с общей базой) или от напряжения коллектор-эмиттер (в схеме с общим эмиттером). На рисунке 28 представлено семейство выходных характеристик в схеме включения с общей базой. Особенностью данной характеристики является то, что при постоянном приращении тока эмиттера она становится регулярной, правая полуплоскость соответствует линейному режиму, загиб характеристик в правой части характеристик соответствует режиму пробоя (резкое возрастание тока коллектора при очень малом изменении напряжения коллектор-база). Особенная точка характеристики Uкэ = 0, что соответствует соединению выводов коллектора и эмиттера. Левая полуплоскость соответствует режиму насыщения, так как напряжение коллектор-база становится отрицательным и смещает p-n в прямом направлении, т.е. в этом режиме и базово-эмиттерный и базово - коллекторный переходы смещены в прямом направлении, а ток коллектора определяется внешней цепью.
Если выполняется условие Uкб=Uбэ источники питания взаимно компенсируются и Iб =Iэ =Iк = 0. Проявление эффекта Эрли состоит в наклоне характеристик на линейном активном участке. Наибольшее распространение в схемотехнике функциональных устройств получила основная схема включения с общим эмиттером и поэтому существенно знание основных характеристик для этого включения. Следует напомнить основную особенность этого включения, общей точкой соединения источников питания является эмиттер. Поэтому входным током в этом случае является ток базы — Iб, а выходным — ток коллектора — Iк. Указанные особенности приводят к изменению вида характеристик, что особенно заметно на выходных характеристиках — выходные характеристики располагаются только в положительной полуплоскости аргумента.
На рис.29 показаны выходные характеристики в схеме включения с общим эмиттером. Все характеристики обычно разбивают на три области: 1 — режим насыщения, 2 — линейный усилительный режим, 3 — режим пробоя. В линейной электронике наибольшее применение находит второй режим, для которого характерна зависимость . В этом выражении b — коэффициент передачи тока базы в цепь коллектора, — дифференциальное сопротивление коллектора. Причем третье слагаемое отображает влияние эффекта Эрли. Каждая из характеристик получена при определенном значении тока базы Iб1 < Iб2 < Iб3 < Iб4. Если Iб(i+1) - Iбi = DIб — const, то семейство характеристик получается регулярным. В режиме насыщения выполняется соотношение , т.е. нарушена линейная зависимость тока коллектора от тока базы, а величина тока коллектора определяется внешней цепью (сопротивлением в цепи коллектора транзистора).
Третья область характерна наступлением либо электрического пробоя переходящего в тепловой, либо теплового пробоя связанного с рассеиванием на коллекторе большой электрической мощности. ВАХ дают полное описание транзистора, но использование их достаточно сложное, позтому на основе ВАХ вводят статические параметры биполярных транзисторов. К ним относятся: дифференциальное сопротивление базы — , коэффициент передачи базового тока в цепь коллектора — b, дифференциальное сопротивление коллектора — . Указанные параметры могут быть определены либо экспериментально, либо из статических характеристик. Рассмотрим определение параметров по статическим характеристикам. Для определения дифференциального сопротивления базы необходимо в рабочей точке к характеристике провести касательную, к которой линиями параллельными осям координат достроить прямоугольный треугольник. Катет параллельный оси тока дает приращение тока базы —dIб, а катет параллельный оси напряжения дает приращение напряжения база-эмиттер —dUбэ. Параметр — дифференциальное сопротивление базы определяется соотношением . Построения, связанные с определением показаны на рисунке 30.
Для нахождения остальных параметров необходимы выходные характеристики (смотри рис. 28). Нахождение дифференциального сопротивления коллектора состоит в том, что в рабочей точке выходной ВАХ проводится касательная (на рисунке касательная совпадает с характеристикой) к которой достраивается прямоугольный треугольник с катетами dIк и dUкэ, и искомый параметр определяют по выражению . Для нахождения основного параметра — коэффициента передачи базового тока в цепь коллектора — b необходимо выполнить следующее (см. рис. 31). Произвольно на втором участке ВАХ провести вертикальную линию — П. По точкам пересечения проведенной линии с двумя линиями ВАХ, построенных соответственно с токами базы Iб1 и Iб2, определить значения токов коллектора Iк1 и Iк2. Параметр определиться соотношением b = dIк/dIб, где dIк = Iк2 - Iк2, dIб = Iб2 - Iб1.
Замечание. Обычно выходные характеристики строятся при выполнении условия dIб = Iб(i+1) - Iбi — постоянная величина. Поэтому семейство выходных характеристик является регулярным, а это дает возможность оценить влияние тока базы на коэффициент передачи базового тока. Эта зависимость получается если определить b для всех соседних значений тока базы, и на основе полученных данных построить зависимость b = f(Iб).
Для простейших расчетов усилительных каскадов на биполярных транзисторах во многих случаях достаточно знание рассмотренных параметров. В электротехнике для описания характеристик (параметров) неизвестных электрических и электронных устройств широко используется метод четырехполюсника. Под четырехполюсником понимается электрическая схема или часть схемы, которая отображается прямоугольником и имеет четыре вывода, два входных и два выходных. На рис. 32 показано изображение четырехполюсника с вписанным в него транзистором.
Обозначим: u1, i1 — напряжение и ток на входе четырехполюсника; u2, i2 — напряжение и ток на выходе четырехполюсника. Из указанных переменных две являются не зависимыми, а другие две -- функциями. Если в качестве независимых переменных выберем i1, u2, то четырехполюсник описывается уравнениями
u1 = A*i1 + B*u2 i2 = C*i1 + D*u2. Коэффициенты A,B,C,D являются параметрами четырехполюсника и соответственно параметрами транзистора. В зависимости от того, в каких единицах измерения представлены параметры они получают общее название: если они измеряются в омах, то — Z - параметры, если в 1/ом, то — Y - параметры. Однако в полупроводниковой электронике повсеместно распространены h - параметры (гибридные). При использовании h - параметров уравнения четырехполюсника будут иметь вид
. Рассмотрим, как могут быть определены параметры четырехполюсника, и каков их физический смысл. При переходе от мгновенных значений к приращениям переменных будем иметь: * , при u2 = 0, т.е. при коротком замыкании на выходе четырехполюсника, но с другой стороны при включении с общим эмиттером . Таким образом, параметр четырехполюсника h11 является дифференциальным сопротивлением базы. * , при u2 = 0, но , следовательно, в схеме включения с общим эмиттером параметр h21 является коэффициентом передачи базового тока в цепь коллектора — b. * , при i1 = 0, т.е. при холостом ходе на входе схемы. Но и, следовательно . * , при i1=0 — характеризует степень влияния выходного напряжения на режим входной цепи, поэтому он называется коэффициентом обратной связи. В справочниках по транзисторам в качестве параметров даются h - параметры. Помимо гибридных параметров среди справочных данных публикуют производный параметр , при Uкэ = const, который называют “крутизна” и который характеризует изменение тока коллектора при изменении напряжения база-эмиттер на единицу. Этот параметр можно выразить через другие параметры . Помимо этого показано .
|
|||||||||||||||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 729; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.227.73 (0.011 с.) |