Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Работа и мощность в цепи постоянного тока.

Поиск

Работа тока - это работа электрического поля по переносу электрических зарядов вдоль проводника;
Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого работа совершалась.

Применяя формулу закона Ома для участка цепи, можно записать несколько вариантов формулы для расчета работы тока:

По закону сохранения энергии:

работа равна изменению энергии участка цепи, поэтому выделяемая проводником энергия
равна работе тока.

В системе СИ:

ЗАКОН ДЖОУЛЯ -ЛЕНЦА

При прохождениии тока по проводнику проводник нагревается, и происходит теплообмен с окружающей средой, т.е. проводник отдает теплоту окружающим его телам.

Количество теплоты, выделяемое проводником с током в окружающую среду, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

По закону сохранения энергии количество теплоты, выделяемое проводником численно равно работе, которую совершает протекающий по проводнику ток за это же время.

В системе СИ:

[Q] = 1 Дж

МОЩНОСТЬ ПОСТОЯННОГО ТОКА

- отношение работы тока за время t к этому интервалу времени.

В системе СИ:

 

Первый закон Кирхгофа.

Сколько тока втекает в узел, столько из него и вытекает. i 2 + i 3 = i 1 + i 4

Первое правило Кирхгофа (правило токов Кирхгофа) гласит, что алгебраическая сумма токов в каждом узле любой цепи равна нулю. При этом втекающий в узел ток принято считать положительным, а вытекающий — отрицательным:

Иными словами, сколько тока втекает в узел, столько из него и вытекает. Это правило следует из фундаментального закона сохранения заряда.

7. Расчет цепи методом эквивалентных структурных преобразований.

Метод эквивалентных структурных преобразований.

В основе различных методов преобразования электрических схем лежит понятие эквивалентности, согласно которому напряжения и токи в ветвях схемы, не затронутых преобразованием, остаются неизменными. Преобразования электрических схем применяются для упрощения расчетов. Рассмотрим наиболее типичные методы преобразования. Последовательное соединение элементов.

При последовательном соединении элементов через них протекает один и тот же ток I (рис. 1.18). Согласно второму закону Кирхгофа, напряжение, приложенное ко всей цепи

(1.27)

Для последовательного соединения сопротивлений r1,r2...rn (рис. 1.18) с учетом (1.6) будем иметь

(1.28)

Ток в цепи с последовательным соединением элементов равен:

 

(1.29)

а напряжение на n-ом элементе равно

 

(1.30)

При последовательном соединении источников напряжения они заменяются одним эквивалентным источником с напряжением Uэкв, равным алгебраической сумме напряжений отдельных источников. Причем со знаком «+» берутся напряжения, совпадающие с напряжением эквивалентного источника, а со знаком «-» - несовпадающие (рис. 1.19).

 

Параллельное соединение элементов.

Соединение групп элементов, при котором все элементы находятся под одним и тем же напряжением, называется параллельным (рис. 1.20). Согласно первому Кирхгофа, ток всей цепи I равен алгебраической сумме токов в параллельных ветвях, т.е.

(1.31)

На основании этого уравнения с учетом (1.8) для параллельного соединения резистивных элементов получаем:

(1.32)

где -эквивалентная проводимость.

 

 

Токи и мощности параллельно соединенных ветвей при U=const (рис. 1.20) не зависят друг от друга и определяются по формулам:

(1.33)

Мощность всей цепи равна:

, (1.34)

где rэ=1/gэ -эквивалентное сопротивление цепи.

При увеличении числа параллельных ветвей эквивалентная проводимость электрической цепи возрастает, а эквивалентное сопротивление соответственно уменьшается. Это приводит к увеличению тока I. Если напряжение остается постоянным, то увеличивается также общая мощность Р. Токи и мощности ранее включенных ветвей не изменяются.

Рассмотрим частные случаи параллельного соединения резистивных элементов.

а) параллельное соединение двух элементов


б) параллельное соединение n ветвей с одинаковыми сопротивлениями

(1.36)



Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 7599; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.178.166 (0.007 с.)