Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Расчет и конструирование  узлов арки.

Поиск

3.4. Статический расчет арок.

 

Производим в следующем порядке. Определяем действующие на арку расчетные нагрузки. Затем вычисляют опорные реакции — вертикальную R и горизонтальную H — и действующие в сечениях арки усилия — изгибающие моменты М, продольные N и поперечные Q силы. Затем подбирают сечения арки — ее верхнего и нижнего поясов и проверяют действующие в них нормальные s и скалывающие t напряжения, которые не должны превышать расчетных сопротив­лений древесины при сжатии Rc, растяжении Rр, скалывании t и расчетного сопротивления стали R. В заключение рассчитывают узловые соединения.

Распределенные нагрузки определяются с учетом шага расста­новки арок B. Они являются линейными и их удобно вычислять в кН/м, сосредоточенные нагрузки — в кН.

Постоянная нагрузка g условно, в небольшой запас прочности, считается равномерно распределенной по длине пролета арки, для чего ее фактическое значение увеличивается на отношение длины арки к ее пролету, т. е. 2S/l. Снеговая нагрузка S на треугольные и стрельчатые арки дается в нормах условно равномерно распре­деленной по длине пролета арки, расположенной на всем пролете или на полупролетах. Снеговая нагрузка на сегментные арки может быть равномерно распределенной по всему пролету или его половинам и зависит от отношения длины пролета к его высоте — l/(8f). Эта нагрузка S1 может быть также треугольной с максимальными значениями над опорными узлами и нулевыми в коньке в зависимости от отношения высоты арки к пролету f/l.

Ветровая нагрузка W дается нормами равномерно распределен­ной по длине верхнего пояса арки. На пологие треугольные и сегментальные арки она действует в виде ветрового отсоса W и, как правило, не учитывается в расчете, так как она почти не увеличивает усилий, действующих в сечениях этих арок. На относительно высокие сегментные треугольные и стрельчатые арки ветровая нагрузка действует в виде давления W+ на подветренную сторону и отсоса W- на заветренную, обычно близких по значению. На стрельчатые арки ветровая нагрузка может приниматься условно равномерно распределенной по длине хорд полуарок. При расчете этих арок ветровая нагрузка обязательно учитывает­ся, так как она существенно увеличивает усилия в их сечениях. Сосредоточенные нагрузки от подвесного оборудования с грузами Р принимаются в соответствии с данными технологической части расчета.

Определение усилий в сечениях арок производится с учетом того, что трехшарнирные арки являются статически определенными конструкциями. Двухшарнирные арки однажды статически не определимы. Однако расчет их как трехшарнирных дает в большинстве случаев результаты, достаточно близкие к расчету, с учетом их статической неопределимости.

Опорные реакции трехшарнирной арки без затяжки, опираю­щиеся прямо на фундаменты, имеют вертикальные и горизон­тальные составляющие. Вертикальная опорная реакция арки R определяется из условия равенства нулю изгибающего момента в противоположном опорном шарнире. Горизонтальная опорная реак­ция Н, численно равная распору арки без затяжки, определяется из условия равенства нулю изгибающего момента в коньковом шарнире. В арке с затяжкой горизонтальная опорная реакция отсутствует. В такой арке возникает продольная растягивающая сила в затяжке, численно равная горизонтальной опорной реакции арки без затяжки. Например, при равномерной снеговой наг­рузке на левом полупролете арки без затяжки вертикальная опор­ная реакция левой опоры R = Зs1/8, а при этой нагрузке на правом полупролете R = s1/8. В обоих случаях горизонтальная опорная реакция H = 5sl2/(16f).

При треугольной снеговой нагрузке s1 на левом полупролете арки с максимальным значением на опоре вертикальная опорная реакция левой опоры R = 5s1l/24. При такой же нагрузке на правом полупролете вертикальная опорная реакция левой опоры R = sl/24. В обоих случаях горизонтальная опорная реакция H = sl2/(48f). Опорные реакции от двусторонней равномерной нагрузки будут равны сумме реакций от нагрузок на левом и правом полупролетах, т. е. R=q1/2 и H= ql2/(8f).

Усилия в сечениях арок — изгибающие моменты М, продоль­ные N и поперечные Q силы — определяются в зависимости от нагрузок, координат сечений x и у и углов наклона a, касательных к оси в этих сечениях. Например, при равномерной снеговой нагрузке s на левом полупролете арки Мх, Qx и Nх определяются по формулам:

Мх = Rх — Ну — sх2/2; Nх = (R — sх)sina + Нcosa;

Qх = (R — sx)соsa — Hsina.

При равномерной снеговой нагрузке на правой полуарке эти усилия определяются по тем же формулам без членов, содержа­щих нагрузку s. При треугольной нагрузке на левом полупролете с максимальным значением над опорой s1 и промежуточными значе­ниями sx= (1 — 2x/l)s1 усилия в верхнем поясе сегментной арки определяются по формулам:

Мх = Rх — Ну — s1х2/2+sx3/(3l); Nх = (R — s1х+ s1х2/l)sina + Нcosa;

QХ = (R— s1x+ s1х2/l)соsa — Hsina.

При треугольной снеговой нагрузке на правом полупролете усилия в левой полуарке сегментной арки определяют по этим же формулам без членов, содержащих нагрузку s1.

Определение опорных реакций и усилий в сечениях удобно производить в одной, например, левой полуарке в следующем порядке. Сначала от снеговой равномерно распределенной и тре­угольной нагрузки на левом и затем на правом полупролете арки, затем от ветровой нагрузки при ветре слева и справа и далее от подвесного оборудования.

Изгибающие моменты следует определять во всех сечениях левой полуарки и иллюстрировать их эпюрами моментов. Продольные и поперечные силы можно определять только в опорном и коньковом шарнирах сегментных арок, где они достигают наибольших значений. Усилия от двусторонней снеговой равномерно распределенной нагрузки определяются путем суммирования усилий от снеговых нагрузок на левом и правом полупролетах арки, а усилия от постоянной равномерно распределенной нагрузки определяются путем умножения усилий от равномерно распределенной нагрузки на всем пролете арки на отношение постоянной и снеговой равномерно распределенных нагрузок g/s. Полученные значения сводятся в таблицу усилий в сечениях арки. Затем с помощью этой таблицы определяют мак­симальные положительные и отрицательные изгибающие момен­ты, продольные и поперечные силы в сечениях арки и опорные реакции при расчетных сочетаниях действующих нагрузок. При этом усилия от двух и более временных нагрузок уменьша­ются коэффициентом сочетаний k = 0,9.

 

3.4.1. Подбор сечения.

 

Подбор сечений деревянных арок производится на действие в них максимальных усилий — изгибающих моментов М, про­дольных N и поперечных Q сил, при наиболее неблагоприятных сочетаниях расчетных нагрузок.

Верхние пояса арок рассчитываются на сжатие с изгибом и скалывание, а нижние пояса — на растяжение.

Подбор сечения верхнего пояса клеедеревянной арки производится в следующем порядке: задаемся шириной прямоугольного сечения b в соответствии с шириной досок сортамента пиломатериалов и с учетом их острожки по кромкам. Определяем требуемый момент сопротивления Wтп и требуемую высоту сечения hтр, исходя из формулы изгиба, в кото­рой влияние продольной силы можно учитывать коэффициентом 0,8:

                                                     Wтр = М/(0,8Rи); hтр =

Затем высоту сечения следует увязать с толщиной досок d, из которых склеивается арка после их острожки.

 

3.4.2. Проверка напряжений.

 

Проверка нормальных сжимающих напряжений в сечениях арки производится по формуле:

 

s=N/A+MД/W≤Rc,

 

где МД=М/x; x=1-N/(jRcA).

Расчетное сопротивление сжатию должно приниматься с учетом высоты сечения mб, ветра mп, и толщины досок mсл.

Проверка скалывающих напряжений производится в концах полуарки по формуле:

 

t=QS/(Ib)≤Rск.

 

3.4.3. Расчет на  устойчивость.

 

Расчет на устойчивость плоской формы деформи­рования верхнего пояса особенно необходим при расчете клеедеревянных арок, которые имеют сечения пояса значительной высо­ты h при относительно малой его ширине b. Этот расчет должен исключать опасность выхода пояса из вертикальной плоскости до момента потери им несущей способности по прочности. Верх­ние пояса арок закрепляются от выхода из вертикальной плоскости скатными связями в точках, равные расстояния между которыми называются расчетными длинами lр. Эти связи, как правило, располагаются близ верхних кромок арок.

 

Расчетной длиной полуарки из ее плоскости является длина ее оси s.

Если условие не соблюдается, шаг скатных связей должен быть уменьшен или необходимы дополнительные связи, закрепляющие из плоскости нижнюю зону полуарки.

 

Расчет узлов арок производится на максимальные действующие в них продольные N и поперечные Q силы.

Опорный узел клеедеревянной арки без затяжки проверяется по прочности древесины при смятии по формуле:

s=N/Aсм≤Rсм.

 

В опор­ном узле сегментной или стрельчатой арки торец полуарки пер­пендикулярен ее оси, продольная сила N действует вдоль волокон древесины при угле смятия a=0, и расчетное сопротивление смятию является максимальным, равным расчетному сопротивле­нию сжатию Rс. В опорном узле треугольной арки торец полуар­ки обычно перпендикулярен продольной и поперечной силе, и сминающая сила

 

Nсм =

 

Эта продольная сила действует под углом к волокнам древесины, определяемым из выражения tga=Q/N и расчетное сопротивление смятию Rсмa соответ­ственно несколько ниже.

Число болтов крепления конца сегментной и стрельчатой арок к боковым фасонкам башмака определяется по величине попе- речной силы Q, как двухсрезных, работающих симметрично при стальных накладках под углом a =90° к волокнам древесины. В опорном узле треугольной арки, где равнодействующая сил N и Q действует перпендикулярно торцу полуарки, сдвигающая сила отсутствует, и болты крепления являются не расчетными, а конструктивными.

Опорный лист башмака работает на изгиб как балка на упру­гом основании. Максимальный изгибающий момент в его сечении при расчетной ширине b = 1 см определяется по приближенной формуле:

M= (q1l12-q2l22)/8,

 

где q1 и q2 равны давлению торца полуарки и реактивному дав­лению фундамента, а l1 и l2 равны соответственно длине листа и ширине сечения арки.

Требуемая толщина опорного листа d определяется из выра­жения

 

dтр =

 

 Анкерные болты рассчитываются на срез и смятие при действии поперечных сил по нормам проектирования стальных конструкций. Поверхность опор рассчитывается на смятие от действия продольных сил N.

При расчете конькового узла сегментной клеедеревянной арки со стальными узловыми крепле­ниями проверяется прочность лобовых упоров торцов полуарок в упорные листы креплений на смятие продольными силами, дей­ствующими вдоль волокон древесины. Число двухсрезных сим­метрично работающих болтов, соединяющих концы полуарок с фасонками креплений, определяется по величине поперечной силы Q, действующей в узле, с учетом того, что эта сила давит на болты под углом смятия a=90° к волокнам древесины, поэто­му при определении несущей способности болтов надо вводить коэффициент Ka. Монтажные болты, соединяющие упорные лис­ты, рассчитывают на действие поперечной силы. Стальные листы крепления не требуют расчета, так как обычно работают со значительными запасами прочности.

Расчет коньковых узлов треугольных и стрельчатых клеедеревянных арок производится аналогично с учетом того, что продольная и поперечная силы действуют здесь под углами к волокнам древесины, равными a и 90-a, где a— угол наклона касательной к оси полуарки в этом узле.

Расчет коньковых узлов клеедеревянных и брусчатых малопролетных арок с накладками из толстых досок или клеедеревянными и с болтовыми крепле­ниями производится на смятие торцов полуарок продольными силами N. Требуемое число соединительных болтов определяется при действии поперечной силы Q. При этом каждая половина накладки условно считается консольной балкой проле­том l, равным расстоянию между рядами болтов, и консолью a, равной расстоянию крайнего ряда болтов от оси узла, где дей­ствует поперечная сила Q. При этом в ближайшем к оси узла ряду болтов возникает усилие R1 = Q(l + а)/l, а в дальнем ряду — R2 = Qa/l. По этим усилиям определяются требуемые количества болтов с учетом того, что они работают под значи­тельными углами к волокнам древесины как двухсрезные и сим­метричные. В ближайшем к оси узла ряду ставятся обычно два болта, а в более дальнем — один болт. Сами накладки обычно работают на изгиб с избыточным запасом прочности.




Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 8; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.63.148 (0.012 с.)