Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Рисунок 3.1 — Номограммы для определения коэффициента ползучести j(¥, t0) для бетонаСодержание книги
Поиск на нашем сайте
3.1.3 Упругие деформации (1) Упругие деформации бетона существенно зависят от его состава (особенно от заполнителей). Значения, приведенные в настоящем техническом кодексе, должны рассматриваться как ориентировочные для общего применения. Однако они должны быть специально оценены, если конструкция чувствительно реагирует на отклонения от приведенных в стандарте общих значений. (2) Модуль упругости бетона зависит от модулей упругости его составляющих. Приближенные значения модуля упругости Ecm, определенные для секущей, проведенной через точки sс = 0 и 0,4fcm для бетона на кварцевых заполнителях, приведены в таблице 3.1. При заполнителях из известняка или песчаника эти значения должны быть уменьшены соответственно на 10 % и 30 %. При базальтовых заполнителях значение должно быть увеличено на 20 %. Примечание — Национальное приложение может содержать не противоречащую дополняющую информацию. (3) Изменение модуля упругости во времени может быть оценено при использовании зависимости (3.5) где Eсm(t) и fcm(t) — соответственно значения модуля упругости и средней прочности в возрасте t сут; Ecm и fcm — значения модуля упругости и средней прочности в возрасте 28 сут. Взаимосвязь между fcm(t) и fcm представлена выражением (3.1). (4) Коэффициент Пуассона может быть принят равным 0,2 для бетона без трещин и 0 — для бетона с трещинами. (5) Если более точная информация отсутствует, линейный коэффициент температурного расширения принимается равным 10 · 10–6 · К–1 . 3.1.4 Ползучесть и усадка (1)P Ползучесть и усадка бетона зависят, в основном, от относительной влажности окружающей среды, геометрических размеров конструктивного элемента и состава бетона. На ползучесть бетона также оказывает влияние степень зрелости бетона (начальная прочность) при первоначальном приложении нагрузки, а также продолжительность нагружения и величина нагрузки. (2) Коэффициент ползучести j(t, t0) связан с касательным модулем упругости Еc, который может быть принят равным 1,05Еcm. Если особая точность не требуется, то в качестве предельной характеристики ползучести j(∞, t0) может быть принято значение, приведенное на рисунке 3.1, при условии, что бетон в момент времени, соответствующий приложению нагрузки, t = t0, не подвергается сжимающим напряжениям, большим, чем 0,45fck(t0).
Примечание — Другая информация, включая развитие ползучести во времени, приведена в приложении В. (3) Деформация ползучести бетона eсс(¥, t0) в возрасте t = ∞, при постоянном напряжении сжатия sс, приложенном во время t = t0, рассчитывается по формуле ecc . (3.6) (4) Если напряжения сжатия бетона в возрасте t0 превышает значение 0,45fck(t0),то, как правило, следует учитывать нелинейную ползучесть. Такой высокий уровень напряжений может появиться (3.7) При этом jnl(¥, t0) — нелинейный условный коэффициент ползучести, вводимый взамен j(¥, t0); ks — отношение «напряжение — прочность» sс/fck(t0), где sc — напряжение сжатия, а fck(t0) — характеристическая прочность бетона в момент времени, соответствующий нагружению. (5) Значения, приведенные на рисунке 3.1, действительны при температуре окружающей среды j(¥, t0) — предельное значение коэффициента ползучести; t0 — возраст бетона в момент нагружения, в сутках; h0 — приведенный размер, равный 2Aс/u, где Ac — площадь поперечного сечения бетона; S — класс S по 3.1.2 (6); N — класс N по 3.1.2 (6); R — класс R по 3.1.2 (6).
|
|||||
Последнее изменение этой страницы: 2024-06-27; просмотров: 12; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.153.224 (0.009 с.) |