Гипоэнергетические состояния 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Гипоэнергетические состояния



Нарушения работы процессов, обеспечивающих клетки энергией, приводит к развитию гипоэнергетических состояний, сопровождающихся нарушениями различных функций клеток. Гипоэнергетические состояния являются основной причины гибели клеток со всеми вытекающими отсюда последствиями.

  • Алиментарные. К ним относятся гипоэнергетические состояния, вызванные недостаточным поступлением в организм питательных веществ или витаминов (В1, В2, В3, В5 и др.)
  • Гипоксические. Они могут быть обусловлены или недостатком кислорода во внешней среде (экзогенные); или нарушением функционирования органов дыхания, например при тяжелой пневмонии (дыхательные); или нарушением транспорта кислорода вследствие расстройства кровообращения (циркуляторные); или снижением содержания гемоглобина в крови, а также нарушением его способности транспортировать кислород, например, при образовании карбоксигемоглобина при отравлении угарным газом (гемические).
  • Гистотоксические. Последние могут быть обусловлены поступлением в клетки или соединений, являющихся ингибиторами работы цепи дыхательных ферментов (ротенон, амитал, антимицин, карбоксин, цианид), или появлением в клетках соединенийразобщителей (полихлорфенолы или нитрофенолы).

Наиболее частой причиной гипоэнергетических состояний является гипоксия, возникновение которой в свою очередь связано с нарушением:

  • поступления кислорода в кровь, что наблюдается при недостаточности О2 во вдыхаемом воздухе или нарушении легочной вентиляции;
  • транспорта кислорода в ткани при нарушении кровообращения или снижении транспортной функции гемоглобина;
  • функций митоходрий, вызванное действием ядов, разобщителей.

.

Биологическое окисление как главный путь расщепления питательных веществ в организме, его функции в клетке. Способы окисления веществ в биологических си-стемах. Ферменты, катализирующие окислительные реакции в организме. Цикл трикарбоновых кислот Кребса: последовательность реакций, регуляция работы цикла и его биологическая роль.

БИОЛОГИЧЕСКОЕ ОКИСЛЕНИЕ - это совокупность окислительных процессов в живом организме, протекающих с обязательным участием кислорода. Синоним - ТКАНЕВОЕ ДЫХАНИЕ. Окисление одного вещества невозможно без восстановления другого вещества. Окислительно-восстановительных процессов в живой природе очень много. Часть окислительно-восстановительных процессов, протекающих с участием кислорода, относится к биологическому окислению.


Функции биологического окисления:

- высвобождение энергии, заключенной в химических связях питательных веществ. Выделяющаяся энергия используется для осуществления энергозависимых процессов, протекающих в клетках, а также для поержания температуры тела. 

 

- пластическая: в ходе расщепления питательных веществ образуются низкомолекулярные промежуточные продукты, используемые в дальнейшем для биосинтезов. Например, при окислительном распаде глюкозы образуется ацетилКоА, который далее может пойти на синтез холестерола или высших жирных кислот.

 

- генерация восстановительных потенциалов, которые в дальнейшем используются в восстановительных биосинтезах. Главным источником восстановительных потенциалов в биосинтетических реакциях клеточного метаболизма является НАДФН+Н+, образующийся из НАДФ+ за счет атомов водорода, переносимых на него в ходе некоторых реакций дегидрирования.

 

- участие в процессах детоксикации,т.е. обезвреживания ядовитых соединений или поступающих из внешней среды, или образующихся в организме.


Различные соединения в клетках могут окисляться тремя способами:

1. путем дегидрирования. Принято различать два вида дегидрирования: аэробное и анаэробное. если первичным акцептором отщепляемых атомов водорода служит кислород, дегидрирование является аэробным; если же первичным акцептором отщепляемых атомов водорода служит какоелибо другое соединение, дегидрирование является анаэробным. Примерами таких соединений акцепторов водорода могут служить НАД, НАДФ, ФМН, ФАД, окисленный глутатион (ГSSГ), дегидроаскорбиновая кислота и др.

2. Путем присоединения к молекулам окисляемого вещества кислорода, т.е. путем оксигенирования.

3. Путем отдачи электронов.

Все ферменты, участвующие в катализе окислительно-восстановительных реакций  в организме относятся к классу ОКСИДОРЕДУКТАЗ. В свою очередь, все ферменты этого класса могут быть разделены на 4 группы:

1. Ферменты, катализирующие реакции дегидрирования или дегидрогеназы. В зависимости от характера акцептора отщепляемых от окисляемого субстрата (SH2) атомов водорода различают:

а). Аэробные дегидрогеназы или оксидазы,

б). Анаэробные дегидрогеназы

2. Ферменты, катализирующие реакции оксигенирования или оксигеназы. В зависимости от того, один атом кислорода из молекулы кислорода присоединяются к окисляемому веществу в ходе реакции или идет присоединение обоих атомов кислорода, все оксигеназы делят на две подгруппы:

а). Монооксигеназы/гидроксилазы, катализирующие присоединение к субстрату одного атома кислорода из его молекулы. Второй атом кислорода в ходе монооксигеназной реакции идет на окисление второго соединения косубстрата реакции (КоН2)

б). Диоксигеназы, катализирующие присоединение к окисляемому субстрату обоих атомов из молекулы кислорода. В ходе реакций в молекуле окисляемого субстрата появляются дополнительные кислородсодержащие группировки, карбонильные или гидроксильные.

3. Ферменты, катализирующие отщепление электронов от окисляемых субстратов. Эти ферменты носят название цитохромы. Цитохромы, как правило, содержат геминовые группировки, имеющие в своей структуре атомы железы, способные изменять валентность

4. К оксидоредуктазам относится также группа вспомогательных ферментов, таких как каталаза или пероксидаза. Они играют защитную роль в клетке, разрушая перекись водорода или органические гидроперекиси, образующиеся в ходе окислительных процессов 

Цикл Кребса представляет собой высокоорганизованную циклическую систему взаимных превращений трикарбоновых и дикарбоновых кислот, катализируемую мультиэнзимной ферментной системой, представляющую собой основу клеточного метаболизма. Он функционирует в матриксе митохондрий.

 

 

Cхема реакций цикла Кребса

В ходе двух последовательных реакций цитрат через цисаконитат превращается в изоцитрат. Обе эти реакции: отщепление и присоединение воды катализируется одним и тем же ферментом аконитазой. Следующая реакция уже носит окислительный характер: изоцитрат подвергается дегидрированию. Отщепленные от изоцитрата атомы водорода переносятся на НАД+Энергия этого окислительного процесса, а в основном накапливается в виде энергии восстановленного НАДН+Н+. Одновременно с дегидрированием происходит отщепление карбоксильной группы изоцитрата в виде СО2, и трикарбоновая кислота превращается в дикарбоновую 2оксоглутарат. Эта реакция катализируется ферментом изоцитратдегидрогеназой.

Образовавшийся 2-оксоглутарат на следующем этапе вновь подвергается  окислительному декарбоксилированию. Он теряет 2 атома водорода, которые опять же переносятся на НАД+, и от него отщепляется молекула СО2. В результате 2оксуглатарат превращается сукцинилКоА. Это превращение катализируется надмолекулярным полиферментным 2оксоглутаратдегидрогеназным комплексом, в состав которого входят ферменты трех типов, а также 5 кофакторов: НАД+, ФАД, КоА, ТДФ и ЛК. Энергия этого окислительного процесса накапливается, во-первых, в виде энергии восстановленного НАДН+Н+, во-вторых, в виде энергии макроэргической связи сукцинил-КоА. В следующей реакции, катализируемой сукцинил~КоАсинтетазой, эта энергия трансформируется в энергию макроэргической связи ГТФ, а сукцинил~КоА превращается в сукцинат.

Далее сукцинат под действием фермента сукцинатдегидрогеназы теряет 2 атома водорода и превращается в фумарат, а два атома водорода вместе с запасом энергии, выделяющейся при окислении, переносятся на ФАД. Фумарат под действием фумаразы присоединяет воду и переходит в малат. Малат, в свою очередь, под действием малатдегидрогеназы окисляется путем дегидрирования в щавелевоуксусную кислоту, замыкая тем самым цикл. Отщепленные от малата атомы водорода переносятся на НАД+, в восстановленной форме которого накапливается энергия окисления.

Работа цикла Кребса регулируется с помощью термодинамических и кинетических механизмов контроля. Термодинамические механизмы контролируют направление потока метаболитов в цикле Кребса, тогда как кинетические механизмы ответственны за регуляцию интенсивности потока метаболитов по циклу.

Пусковой реакцией цикла Кребса является цитратсинтазная реакция. Она сопровождается большой потерей свободной реакции (DG= 7,7 ккал/М) и в условиях матрикса митохондрий цитратсинтазная реакция практически необратима, хотя в цитозоле цитрат может превращаться в ацетил-КоА и оксалоацетат с использованием энергии АТФ. Большой потерей свободной энергии сопровождается и превращение 2оксоглутарата в сукцинилКоА (DG = 8,0ккал/М), в условиях клетки она абсолютно необратима. Таким образом, за счет включения в систему реакций цикла двух реакций, необратимых в условиях матрикса митохондрий, движение метаболитов в системе возможно только в одном направлении в направлении окисления ацетильных остатков.

Кинетический контроль работы цикла осуществляется за счет, во-первых, изменения концентрации субстратов, в особенности за счет изменения концентрации оксалоацетата и ацетил-КоА, и, во-вторых, за счет изменения активности регуляторных ферментов цикла. К ним относятся цитратсинтаза, изоцитратдегидрогеназа, 2оксоглутаратдегидрогеназный мультиэнзимный комплекс и сукцинатдегидрогеназа.

Скорость потока метаболитов по циклу Кребса, прежде всего, контролируется на его пусковой стадии, т.е. на уровне цитратсинтазной реакции. Этот контроль, во-первых, осуществляется путем изменения концентрации оксалоацетата в клетке и, во-вторых, за счет изменения активности цинтратсинтазы, катализирующей эту реакцию. 

В целом, при повышении концентрации АТФ и НАДН+Н+ в клетках интенсивность потока метаболитов в цикле Кребса падает за счет аллостерического ингибирования и негативного эффекта ковалентной модификации; в то время как накопление АДФ и АМФ в клетке стимулирует работу цикла.

Биологическая роль ЦТК:

I. Донор атомов водорода для дыхательной цепи.

II. Энергетическая. Окисление одной молекулы ацетил-КоА в ЦТК приводит к образованию 12 молекул АТФ.

III. Амфиболическая (от греч. «amfi» - оба) – выполняет двойную функцию, поскольку является общим этапом катаболизма, поставляющим небольшие молекулы-предшественники для реакций биосинтеза аминокислот, жирных кислот и углеводов.

 

 

Главная цепь дыхательных ферментов в митохондриях, ее структурная организация и биологическая роль. Окислительное фосфорилирование в цепи дыхательных ферментов, коэффициент Р/О. Окислительное фосфорилирование на уровне субстратов. Ксенобиотики-ингибиторы и вещества-разобщители окисления и фосфорилирования.

Главная цепь дыхательных ферментов (в дальнейшем сокращенно ЦДФ) состоит из 3 сложных надмолекулярнных белковых комплексов, катализирующих последовательную передачу электронов и протонов с восстановленного НАДН+Н на кислород:

Первый надмолекулярный комплекс катализирует перенос 2 электронов и 2 протонов с восстановленного НАДН+Н+ на КоQ с образованием восстановленной формы последнего КоQH2. В состав надмолекулярного комплекса входит около 20 полипептидных цепей, в качестве простетических групп некоторых из них входит молекула ФМН и один или несколько так называемых железосерных центров (FeS)n. Электроны и протоны с НАДН+Н+ вначале переносятся на ФМН с образованием ФМНН2, затем электроны с ФМНН2 переносятся через железосерные центры на КоQ, после чего к КоQ присоединяются протоны с образованием его восстановленной формы.

Следующий надмолекулярный комплекс - комплекс III также состоит из нескольких белков: цитохрома b, белка, имеющего в своем составе железосерный центр и цитохрома С1. В состав любого цитохрома входит геминовая группировка с входящим в неё атомом железа элемента с переменной валентностью, способного и принимать электрон, и отдавать его. Начиная с КоQН2 пути электронов и протонов расходятся. Электроны с КоQН2 передаются по цепи цитохромов, причем одновременно по цепи передается по 1 электрону, а протоны с КоQН2 уходят в окружающую среду.

Цитохром С - оксидазный комплекс (комплекс IV) состоит из двух цитохромов: цитохрома а и цитохрома а3. Цитохром а имеет в своем составе геминовую группировку, а цитохром а3 кроме геминовой группировки в своем составе содержит еще и атом Cu. Электрон при участии этого комплекса переносится с цитохрома С на кислород.

НАД+, КоQ и цитохром С не входят в состав ни одного из описанных комплексов. НАД+ служит коллекторомпереносчиком протонов и электронов с большого ряда окисляемых в клетках субстратов. Функцию коллектора электронов и протонов выполняет также КоQ, принимая их с некоторых окисляемых субстратов (например, с сукцината или ацилКоА) и передавая электроны на систему цитохромов с выводом протоны в окружающую среду. Цитохром С также может принимать электроны непосредственно с окисляемых субстратов и передавать их далее на четвертый комплекс ЦДФ.

Так, при окислении сукцината работает сукцинат: КоQоксидаредуктазный комплекс (Комплекс II), передающий протоны и электроны с сукцината непосредственно на КоQ, минуя НАД+.

 



Поделиться:


Последнее изменение этой страницы: 2021-09-25; просмотров: 165; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.175.182 (0.022 с.)