Вывод зависимости электромагнитного момента от нагрузки
Содержание книги
- Классификация электрических машин
- Конструкция и принцип действия однофазного трансформатора
- Работа трансформатора под нагрузкой. Уравнения электр-го состояния, векторная диаграмма, схема замещения, параметры схемы замещения транс-ра
- Параллельная работа транс-ов. Условия включения транс-ов на параллельную работу
- Трехфазные трансформаторы. Схемы и группы соединения обмоток трансформаторов
- Сварочные трансформаторы: устройство, принцип действия, назначение. Внешние харак-ки сварочных транс-ов
- Сварочные трансформаторы с неподвижным подмагничиваемым шунтом
- Физические процессы в АМ при неподвижном роторе
- Пуск в ход трехфазных АД с фазным ротором
- Рабочие харак-ки трехфазного АД
- Нагрев и охлаждение электродвигателей
- Работа АМ с вращающимся ротором
- АД с улучшенными пусковыми свойствами (пояснить рисунками пазов и мех-ми харак-ми)
- Способы регулирования частоты вращения АД
- Вращающееся магнитное поле АМ
- Мех-ие харак-ки АД в двигательном и тормозном режимах
- Схема замещения АМ, векторная диаграмма, параметры схемы замещения
- Расчет и построение мех-ой харак-ки АД
- Способы регулирования скорости вращения ДПТ: ур-ие, мех-ие харак-ки
- Тормозные режимы работы электродвигателя постоянного тока
- Элементы конструкции и принцип действия машин постоянного тока
- Способы возбуждения генераторов постоянного тока. Основные харак-ки ГПТ
- Внешняя характеристика генератора независимого возбуждения
- Построить механическую и скоростную (электромеханическую) харак-ки дпт независимого возбуждения по паспортным данным
- ДПТ последовательного и смешанного возбуждения
- Реакция якоря дпт (продольная и поперечная) и ее влияние на мех-ую харак-ку двигателя последовательного возбуждения
- Механические харак-ки ДПТ независимого возбуждения
- Пуск электродвигателя постоянного тока независимого возбуждения (мех-ие харак-ки)
- ДПТ независимого, параллельного возбуждения
- ДПТ Параллельного возбуждения
- Конструкция и принцип действия синхронной машины
- Основные харак-ки синхронного генератора
- Устройство и принцип действия синхронного двигателя. Вывод зависимости электромагнитного момента от нагрузки
- Вывод зависимости электромагнитного момента от нагрузки
- Электромагнитный момент синхронного двигателя. Пуск синхронных двигателей
- Угловая и механическая харак-ки синхронного двигателя
- Способы пуска в ход синхронного двигателя
- Что называется реакцией якоря в сг. Как проявляется реакция якоря при разных характерах нагрузки (активной, индуктивной, емкостной).
- В чем конструктивное различие турбо- и гидрогенераторов? Каковы причины этого различия?
- Принцип действия генератора постоянного тока
- Конструкция генераторов постоянного тока
- Коммутация в МПТ. Виды коммутации
- Параллельная работа сг. Необходимые условия для включения сг на параллельную работу
- Реактивные СД. Принцип действия и основные характеристики
- Гистерезисные СД. Принцип действия и основные характеристики
- Шаговые СД. Принцип действия и основные характеристики
При рассмотрении принципа работы синхронных машин было установлено, что вращающий момент является синусной функцией угла нагрузки q. Этот же результат можно получить из баланса мощностей машины.
Активная мощность, потребляемая машиной из сети равна , где - число фаз обмотки статора. Из векторной диаграммы следует, что . Кроме того, из прямоугольных треугольников abc и adc получим . Отсюда активная мощность . Если пренебречь относительно небольшими тепловыми потерями в статоре, то активная мощность будет равна электромагнитной мощности, т.е. мощности передаваемой магнитным полем из статора в ротор , где - синхронная угловая частота вращения ротора, - угловая частота питающей сети, а p - число пар полюсов машины. Отсюда вращающий момент синхронной машины равен
. При постоянном напряжении сети максимальный момент машины зависит только от ЭДС потока ротора, т.е. от величины тока возбуждения.
В случае явнополюсной машины индуктивное сопротивление реакции якоря по продольной и поперечной оси будут разными . Соответственно разными будут и синхронные сопротивления по этим осям – и . Подставляя эти выражения в уравнение момента, получим
Это выражение справедливо для любого типа ротора как явнополюсного, таки неявнополюсного. У неявнополюсного ротора . Тогда второе слагаемое обращается в нуль, и мы придем к полученному ранее выражению. Таким образом, в случае магнитной асимметрии ротора электромагнитный момент складывается из двух составляющих: основного и реактивного моментов.
Зависимость электромагнитного момента машины от угла нагрузки называется угловой характеристикой. В общем случае она представляет собой сумму двух синусоид основного и реактивного моментов показанных на рисунке 1. Максимум основного момента приходится на угол , а реактивного – .
Участки характеристики с положительной производной соответствуют устойчивым режимам работы машины, т.е. углам нагрузки . На этих участках увеличение момента нагрузки вызывает увеличение угла нагрузки и соответственно электромагнитного момента вплоть до статического состояния, когда момент нагрузки будет уравновешен моментом машины. На участках с увеличение угла нагрузки будет приводить к снижению электромагнитного момента и увеличению рассогласования с моментом на валу. Если при этом момент нагрузки не превышает максимального момента машины, то ротор повернувшись чуть более чем на пол-оборота придет в точку статического равновесия на устойчивом участке угловой характеристики.
Очевидно, что синхронная работа машины возможна только если нагрузочный момент не превышает максимальный .
Механическая характеристика синхронной машины показана на рис. 2. Она представляет собой отрезок прямой линии, проходящий через точку синхронной скорости параллельно оси момента и ограниченный значениями угловой характеристики. Для каждой точки механической характеристик можно определить угол нагрузки, спроектировав эту точку на участок устойчивой работы обращенной угловой характеристики.
|