Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Сварочные трансформаторы с неподвижным подмагничиваемым шунтом
Содержание книги
- Классификация электрических машин
- Конструкция и принцип действия однофазного трансформатора
- Работа трансформатора под нагрузкой. Уравнения электр-го состояния, векторная диаграмма, схема замещения, параметры схемы замещения транс-ра
- Параллельная работа транс-ов. Условия включения транс-ов на параллельную работу
- Трехфазные трансформаторы. Схемы и группы соединения обмоток трансформаторов
- Сварочные трансформаторы: устройство, принцип действия, назначение. Внешние харак-ки сварочных транс-ов
- Сварочные трансформаторы с неподвижным подмагничиваемым шунтом
- Физические процессы в АМ при неподвижном роторе
- Пуск в ход трехфазных АД с фазным ротором
- Рабочие харак-ки трехфазного АД
- Нагрев и охлаждение электродвигателей
- Работа АМ с вращающимся ротором
- АД с улучшенными пусковыми свойствами (пояснить рисунками пазов и мех-ми харак-ми)
- Способы регулирования частоты вращения АД
- Вращающееся магнитное поле АМ
- Мех-ие харак-ки АД в двигательном и тормозном режимах
- Схема замещения АМ, векторная диаграмма, параметры схемы замещения
- Расчет и построение мех-ой харак-ки АД
- Способы регулирования скорости вращения ДПТ: ур-ие, мех-ие харак-ки
- Тормозные режимы работы электродвигателя постоянного тока
- Элементы конструкции и принцип действия машин постоянного тока
- Способы возбуждения генераторов постоянного тока. Основные харак-ки ГПТ
- Внешняя характеристика генератора независимого возбуждения
- Построить механическую и скоростную (электромеханическую) харак-ки дпт независимого возбуждения по паспортным данным
- ДПТ последовательного и смешанного возбуждения
- Реакция якоря дпт (продольная и поперечная) и ее влияние на мех-ую харак-ку двигателя последовательного возбуждения
- Механические харак-ки ДПТ независимого возбуждения
- Пуск электродвигателя постоянного тока независимого возбуждения (мех-ие харак-ки)
- ДПТ независимого, параллельного возбуждения
- ДПТ Параллельного возбуждения
- Конструкция и принцип действия синхронной машины
- Основные харак-ки синхронного генератора
- Устройство и принцип действия синхронного двигателя. Вывод зависимости электромагнитного момента от нагрузки
- Вывод зависимости электромагнитного момента от нагрузки
- Электромагнитный момент синхронного двигателя. Пуск синхронных двигателей
- Угловая и механическая харак-ки синхронного двигателя
- Способы пуска в ход синхронного двигателя
- Что называется реакцией якоря в сг. Как проявляется реакция якоря при разных характерах нагрузки (активной, индуктивной, емкостной).
- В чем конструктивное различие турбо- и гидрогенераторов? Каковы причины этого различия?
- Принцип действия генератора постоянного тока
- Конструкция генераторов постоянного тока
- Коммутация в МПТ. Виды коммутации
- Параллельная работа сг. Необходимые условия для включения сг на параллельную работу
- Реактивные СД. Принцип действия и основные характеристики
- Гистерезисные СД. Принцип действия и основные характеристики
- Шаговые СД. Принцип действия и основные характеристики
Рис. 4. Устройство сварочного трансформатора с неподвижным магнитным шунтом
Для управления используется падающий участок, т.е. работа сердечника шунта в режиме насыщения. Т.к. проходящий через шунт магнитный поток переменный, рабочая точка выбирается так, чтобы не выходить за пределы падающей ветки магнитной проницаемости.
С увеличением насыщения магнитопровода падает магнитная проницаемость шунта, соответственно увеличивается поток рассеяния, индуктивное сопротивление трансформатора и вследствие этого уменьшается сварочный ток.
Поскольку регулирование электрическое, то возможно дистанционное управление источником питания. Другим преимуществом схемы является отсутствие подвижных частей, т.к. управление электромагнитное, это позволяет упростить и облегчить конструкцию мощных трансформаторов. Электромагнитные усилия пропорциональны квадрату тока, поэтому на большом токе проблема с удержанием подвижных частей. Трансформаторы такого типа выпускались в 70-х и 80-х годах 20-го века.
Так, для ручной дуговой сварки покрытыми штучными электродами, аргонодуговой сварки вольфрамовым электродом, механизированной сварки под флюсом на автоматах с регулированием скорости подачи электродной проволоки в зависимости от напряжения дуги используются ПВХ (рис 1, а). При ПВХ источник работает в режиме регулятора сварочного тока. При этом сварочный ток может регулироваться в заданном диапазоне от минимального I21 до максимального I22 значения плавно или ступенями. По технологическим (сварочным) и экономическим соображениям наиболее часто используется плавно-ступенчатое регулирование, когда две (или более) ступени регулирования сочетаются с плавным регулированием тока внутри каждой ступени. Регулирование сварочного тока при ПВХ производится при приблизительном постоянстве напряжения холостого хода U20. Часто при плавно-ступенчатом регулировании переход на ступень малых токов сопровождается повышением напряжения холостого хода U'20.
Каждому значению сварочного тока соответствует определенное условное значение рабочего напряжения. Так, при ручной дуговой сварке штучными электродами согласно требованию ГОСТ 95-77 рабочее напряжение (в вольтах) и сварочный ток связаны соотношением:
U2 = 20 + 0,04I2
Каждому виду сварки соответствует определенная крутизна наклона ПВХ. Так, например, наиболее крутые характеристики используются для аргонодуговой сварки, более пологие - для ручной сварки штучными электродами, еще более пологие - для сварки под флюсом.
Регулирование длины дуги в процессе сварки при ПВХ осуществляется рукой сварщика или системой регулирования длины дуги сварочного автомата.
При автоматической сварке под флюсом при постоянной, не зависящей от напряжения дуги скорости подачи электродной проволоки используются ЖВХ (рис 1, б).
|