![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Схема замещения АМ, векторная диаграмма, параметры схемы замещенияСодержание книги
Поиск на нашем сайте
Схема замещения позволяет определить токи, потери мощности и падения напряжения в асинхронной машине. При этом нужно учитывать, что в обмотке вращающегося ротора проходит ток, действующее значение и частота которого зависят от частоты вращения. Из электрической схемы замещения ротора при его вращении (рис. 4.14, а) следует, что ток ротора (4.30) I2 = E2s /Z2 = E2s /√R22 + X22s. При вращении ротора [см. (4.13а) и (4.12a)] ЭДС E 2s в обмотке ротора и ее частота пропорциональны скольжению s. Следовательно, и индуктивное сопротивление обмотки ротора зависит от скольжения: (4.31) Х 2s = 2 π f2 L2 = 2 π f1 L2 s = X2 s, где Х 2 — индуктивное сопротивление обмотки заторможенного ротора. Рис. 4.14. Схемы замещения ротора асинхронной машины Подставляя значения Е 2s и Х 2s в (4.30), получаем (4.32a) I2 = sE2 /√R22 + (sX2)2. В числителе и знаменателе (4.32а) есть переменная величина s, поэтому преобразуем его к виду (4.32б) I2 = E2 /√(R2 /s)2 + X22. Уравнению (4.326) соответствует электрическая схема замещения, показанная на рис. 4.14,6. Здесь ЭДС Е 2 и индуктивное сопротивление Х 2 неизменны, а активное сопротивление R 2/s изменяется в зависимости от скольжения. Схемы, представленные на рис. 4.14, а и б, с энергетической точки зрения не эквивалентны. Так, в схеме, приведенной на рис. 4.14, а, электрическая мощность ротора Р р равна электрическим потерям (4.33a) Рр = Δ Рэл2 = m 2 I 2 2 R 2, а мощность, потребляемая в схеме, приведенной на рис. 4.14,6, (4.33б) Р'р = m2 I22 R2 /s. Отношение этих мощностей Рр / Р ' р = Δ Рэл 2 / Р ' р = m2 I22 R2 /(m2 I22 R2 /s) = s. Однако, поскольку s = Δ Р эл2 / Р эм, получим, что Р 'р = Р эм. Следовательно, электрическая мощность Р 'р в схеме, представленной на рис. 4.14,6, равна всей электромагнитной мощности, подводимой от статора к ротору. По известным величинам Δ Р эл2 и Р эм можно определить и механическую мощность ротора: (4.34) Рмех = Рэм - Δ Рэл 2 = m2 I22 R2 /s - m2 I22 R2 = m2 I22 R2 (1 - s)/s. Полученный результат наглядно представлен электрической схемой (рис. 4.14, в), в которой активное сопротивление обмотки ротора состоит из двух частей: R 2 и R 2(1 - s)/s. Первое сопротивление не зависит от режима работы, и потери в нем равны электрическим потерям реального ротора. Второе сопротивление зависит от скольжения, и мощность, выделяющаяся в нем, численно равна механической мощности двигателя. Таким образом, рассматриваемая схема замещения позволяет заменить реальный вращающийся ротор неподвижным, в цепь обмотки которого включено активное сопротивление, зависящее от частоты вращения ротора.
Полная схема замещения асинхронной машины при вращающемся роторе отличается от схемы замещения асинхронной машины с заторможенным ротором только наличием в цепи ротора активного сопротивления, зависящего от нагрузки (рис. 4.15, а). Эту схему замещения называют Т-образной. Следовательно, и в этом случае удается свести теорию асинхронной машины к теории трансформатора. Векторная диаграмма для Т-образной схемы замещения приведена на рис. 4.15, 6. Сопротивления Rm и Хт намагничивающего контура значительно меньше соответствующих значений для схемы замещения трансформатора, так как ток холостого хода асинхронного двигателя гораздо больше, чем у трансформатора. Если при рассмотрении работы трансформатора часто можно Пренебречь намагничивающим контуром, то при рассмотрении работы асинхронного двигателя этого сделать нельзя, так как ошибка может получиться значительной. Можно упростить вычисления, преобразовав Т-образную схему замещения в Г-образную, как это показано на рис. 4.16, а. Подобные преобразования изучаются в курсе ТОЭ, поэтому математические выкладки здесь не приводятся. Для Г-образной схемы замещения (рис. 4.16, а) имеем Í1 = Í'0 + (-Í''2); Í''2 = Í'2 /Ć1, где Í '2 и Í ''2 - токи рабочих контуров для Т-образной и Г-образной схем замещения.
Рис. 4.15. Т-образная схема замещения асинхронной машины и ее векторная диаграмма Рис. 4.16. Схемы замещения асинхронной машины Появившийся в этой схеме замещения комплекс Ć1 == 1 + (R 1 + j X 1)/(R m + jX m) практически всегда можно заменить модулем С1, который для асинхронных двигателей мощностью 10 кВт и выше равен 1,02 - 1,05. При анализе электромагнитных процессов в машинах общего применения часто полагают C1 ≈ 1, что существенно облегчает расчеты и мало влияет, на точность полученных результатов. Г-образную схему замещения при C1 = 1 называют упрощенной схемой замещениям вынесенным намагничивающим контуром (рис. 4.16,6). В этой схеме ток I ''0 без большой погрешности можно приравнять току I 0.
Потери и КПД в АМ В электрическом двигателе при преобразовании одного вида энергии в другой часть энергии теряется в виде теплоты, рассеиваемой в различных частях двигателя. В электрических двигателях имеются потери энергии трех видов: потери в обмотках, потери в стали и механические потери. Кроме того, имеются незначительные добавочные потери. Потери энергии в асинхронном двигателе рассмотрим при помощи его энергетической диаграммы (рис. 1). На диаграмме Р1 - мощность, подводимая к статору двигателя из сети. Основная часть Рэм этой мощности, за вычетом потерь в статоре, передается электромагнитным путем на ротор через зазор. Рэм называется электромагнитной мощностью. Рис. 1. Энергетическая диаграмма двигателя Потери мощности в статоре складываются из потерь мощности в его обмотке Pоб1 = m1 х r1 х I12 и потерь в стали Pс1. Мощность Pс1 является потерями на вихревые токи и на перемагничивание сердечника статора. Потери в стали имеются и в сердечнике ротора асинхронного двигателя, но они невелики и могут не приниматься во внимание. Это объясняется тем, что скорость вращения магнитного потока относительно статора n0 во много раз больше скорости вращения магнитного потока относительно ротора n0 - n, если скорость вращения ротора асинхронного двигателя n соответствует устойчивой части естественной механической характеристики. Механическая мощность асинхронного двигателя Рмх, развиваемая на валу ротора, меньше электромагнитной мощности Рэм на значение мощности Pоб2 потерь в обмотке ротора: Рмх = Рэм - Pоб2 Мощность на валу двигателя: Р2 = Рмх - pмх, где pмх - мощность механических потерь, равная сумме потерь на трение в подшипниках, на трение вращающихся частей о воздух (вентиляционные потери) и на трение щеток о кольца (для двигателей с фазным ротором). Электромагнитная и механическая мощности равны: Рэм = ω0M, Рмх = ωM, где ω0 и ω - синхронная скорость и скорость вращения ротора двигателя; М - момент, развиваемый двигателем, т. е. момент, с которым вращающееся магнитное поле действует на ротор. Из этих выражений следует, что мощность потерь в обмотке ротора: или Pоб2 = s х Pэм В случаях, когда известно активное сопротивление г2 фазы обмотки ротора, потери в этой обмотке могут быть найдены также из выраженияPоб2 = m2х r2х I22. В асинхронных электродвигателях имеются также добавочные потери, обусловленные зубчатостью ротора и статора, вихревыми токами в различных конструктивных узлах двигателя и другими причинами. При полной нагрузке двигателя потери Pд принимаются равными 0,5% его номинальной мощности. Коэффициент полезного действия (КПД) асинхронного двигателя: η = P2 / P1 = (P1 - (Pоб - Pс - Pмх - Pд)) / P1, где Роб =Pоб1 + Роб2 - суммарная мощность потерь в обмотках статора и ротора асинхронного двигателя. Поскольку общие потери зависят от нагрузки, то и КПД асинхронного двигателя является функцией нагрузки. На рис. 2, а дана кривая η = f(Р/Рном), где Р/Рном - относительная мощность. Рис. 2. Рабочие характеристики асинхронного двигателя Асинхронный электродвигатель конструируется так, чтобы максимум ее коэффициента полезного действия ηmax имел место при нагрузке, несколько меньшей номинальной. КПД двигателя достаточно высок и в широком диапазоне нагрузок (рис. 2, а). Для большинства современных асинхронных двигателей КПД имеет значение 80 - 90%, а для мощных двигателей 90-96%.
|
|||||||
Последнее изменение этой страницы: 2021-11-27; просмотров: 146; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.16.48.82 (0.012 с.) |