ТОП 10:

ГЕНЕРАЛЬНАЯ И ВЫБОРОЧНАЯ СОВОКУПНОСТЬ.



РЕПРЕЗЕНТАТИВНОСТЬ ВЫБОРКИ. СПОСОБЫ ОТБОРА

(СПОСОБЫ ОРГАНИЗАЦИИ ВЫБОРКИ)

Массовые случайные явления могут быть представлены в виде тех или иных статистических совокупностей однородных объектов. Каждая статистическая совокупность обладает различными признаками.

Различают качественные и количественные признаки. Количественные признаки могут изменяться непрерывно или дискретно.

Пример 1. Рассмотрим производственный процесс (массовое случайное явление) изготовления партии деталей (статистическая совокупность).

Стандартность детали – качественный признак. Размер детали – количественный признак, изменяющийся непрерывно.

Пусть требуется изучить статистическую совокупность однородных объектов относительно некоторого признака. Сплошное обследование, т. е. исследование каждого из объектов статистической совокупности на практике применяется редко. Если исследование объекта связано с его уничтожением или требует больших материальных затрат, то проводить сплошное обследование нет смысла. Если совокупность содержит очень большое число объектов, то провести сплошное обследование практически невозможно. В таких случаях из всей совокупности случайно отбирают ограниченное число объектов и исследуют их.

 

: Определение. Генеральной совокупностью называется вся подлежащая изучению совокупность.

 

: Определение. Выборочной совокупностью или выборкой называется совокупность случайно отобранных объектов.

 

: Определение. Объёмом совокупности (выборочной или генеральной) называют число объектов этой совокупности. Объём генеральной совокупности обозначается через N, а выборки через n.

 

На практике обычно применяют бесповторную выборку, при которой отобранный объект не возвращается в генеральную совокупность (иначе получаем повторную выборку).

Для того чтобы по данным выборки можно было судить о всей генеральной совокупности, выборка должна быть репрезентативной(представительной). Для этого каждый объект должен быть отобран случайно, и все объекты должны иметь одинаковую вероятность попасть в выборку. применяются различные способы отбора (рис. 1).

Пример 2. На заводе 150 станков производят одинаковые изделия.

1. Изделия со всех 150 станков перемешивают и случайно отбирают несколько изделий – простая случайная выборка.

2. Изделия с каждого станка располагаются отдельно.

2.1. Со всех 150 станков отбирают по несколько изделий, причём анализируют отдельно изделия с более изношенных и менее изношенных станков – типическая выборка.

2.2. С каждого из 150 станков по одному изделию – механическая выборка.

2.3. Из 150 станков отбирают несколько (например, 15 станков), и все изделия с этих станков исследуют – серийная выборка.

2.4. Из 150 станков выбирают несколько, а затем по несколько изделий с этих станков – комбинированная выборка.

 

СТАТИСТИЧЕСКОЕ РАСПРЕДЕЛЕНИЕ ВЫБОРКИ.

ГРАФИЧЕСКОЕ ПРЕДСТАВЛЕНИЕ РАСПРЕДЕЛЕНИЙ

Пусть требуется изучить статистическую совокупность относительно некоторого количественного признака X. Числовые значения признака будем обозначать через хi.

Из генеральной совокупности извлекается выборка объёма п.

I. Количественный признак Хдискретная случайная величина.

Наблюдаемые значения хi называют вариантами, а последовательность вариантов, записанных в возрастающем порядке, – вариационным рядом.

Пусть x1 наблюдалось n1 раз,

x2 наблюдалось n2 раз,

xk наблюдалось nk раз,

причем . Числа ni называют частотами, а их отношение к объёму выборки, т.е. , – относительными частотами(или частостями), причем .

Значение вариант и соответствующие им частоты или относительные частоты можно записать в виде таблиц 1 и 2.

Таблица 1

Варианта xi x1 x2 xk
Частота ni n1 n2 nk

 

Таблицу 1 называют дискретным статистическим рядом распределения (ДСР) частот,илитаблицей частот.

Таблица 2

Варианта xi x1 x2 xk
Относительная частота wi w1 w2 wk

Таблица 2 - ДСР относительных частот,илитаблица относительных частот.

: Определение. Модой называется наиболее часто встречающийся вариант, т.е. вариант с наибольшей частотой. Обозначается xмод.

 

: Определение. Медианойназывается такое значение признака, которое делит всю статистическую совокупность, представленную в виде вариационного ряда, на две равных по числу части. Обозначается .

Если n нечетно, т.е. n = 2m + 1, то = xm+1.

Если n четно, т.е. n = 2m, то .

 

Пример 3. По результатам наблюдений: 1, 7, 7, 2, 3, 2, 5, 5, 4, 6, 3, 4, 3, 5, 6, 6, 5, 5, 4, 4 построить ДСР относительных частот. Найти моду и медиану.

Решение. Объем выборки n = 20. Составим ранжированный ряд элементов выборки: 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 7, 7. Выделим варианты и подсчитаем их частоты (в скобках): 1 (1), 2 (2), 3 (3),
4 (4), 5 (5), 6 (3), 7 (2). Строим таблицу:

xi
wi 1/20 2/20 3/20 4/20 5/20 3/20 2/20

Наиболее часто встречающийся вариант xi = 5. Следовательно, xмод = 5. Так как объем выборки n – четное число, то

Если на плоскости нанести точки и соединить их отрезками прямых, то получим полигон частот.

Если на плоскости нанести точки , то получим полигон относительных частот.

Пример 4. Построить полигон частот и полигон относительных частот по данному распределению выборки:

 

xi
ni
wi 2/20 4/20 5/20 6/20 3/20

Решение. На рисунке 2 показан полигон частот и на рисунке 3 – полигон относительных частот.

Рис. 2 Рис. 3

Замечание. Чем круче полигон, тем равномернее процесс.

 

II. Пусть количественный признак Xнепрерывная случайная величина, принимающая значения из интервала (а,b). Весь диапазон наблюдаемых данных делят на частичные интервалы [хi; xi+1), которые берут обычно одинаковыми по длине: = xi+1 xi (i = 0, 1, …, k). Для определения величины интервала можно использовать формулу Стерджеса:

 

 

где (xmax xmin)- разность между наибольшим и наименьшим значениями признака, k = 1 + log2 n - число интервалов (log2 n » 3,322 lg n). Если окажется, что h - дробное число, то за длину частичного интервала следует брать либо ближайшее целое число, либо ближайшую простую дробь. За начало первого интервала рекомендуется брать величину xнач = xmin . В каждом из частичных интервалов подсчитывают число наблюдаемых значений, т.е. частоту ni. По частотам находят относительные частоты . Полученные интервалы и соответствующие им частоты (или относительные частоты) записывают в виде таблицы 3. При этом правая граница последнего интервала тоже включается.

Таблица 3

Частичный интервал [xi,xi+1) [x0, x1) [x1, x2) [xk-1, xk]
Относительная частота wi w1 w2 wk

 

Таблица 3 называется интервальным статистическим рядом распределения (ИСР) относительных частот, который задаёт распределение выборки.Аналогично составляется ИСР частот.

Пример 5. Измерили рост (с точностью до см) 30 наудачу отобранных студентов. Результаты измерений таковы:

178, 160, 154, 183, 155, 153, 167, 186, 163, 155, 157, 175, 170, 166, 159,

173, 182, 167, 171, 169, 179, 165, 156, 179, 158, 171, 175, 173, 164, 172.

Построить интервальный статистический ряд относительных частот.

Решение.Для удобства проранжируем полученные данные:

153, 154, 155, 155, 156, 157, 158, 159, 160, 163, 164, 165, 166, 167, 167,

169, 170, 171, 171, 172, 173, 173, 175, 175, 178, 179, 179, 182, 183, 186.

Отметим, что Х - рост студента - непрерывная случайная величина. Как видим, xmin = 153, хmax = 186; по формуле Стерджеса, при n = 30, находим длину частичного интервала

Примем = 6. Тогда хнач = 153 – =150. Исходные данные разбиваем на шесть (k = 1 + log230 = 5,907 » 6) интервалов:

[150, 156), [156, 162), [162, 168), [168, 174), [174, 180), [180, 186].

Подсчитав число студентов ni, попавших в каждый из полученных промежутков, получим ИСР:

[xi,xi+1) [150, 156) [156, 162) [162, 168) [168, 174) [174,180) [180,186]
ni
wi 4/30 5/30 6/30 7/30 5/30 3/30

Первая и третья строчка таблицы образует ИСР относительных частот.

Замечание.При решении учебных задач на построение ИСР можно пользоваться следующими правилами.

1. Назначаются нижняя граница а и верхняя граница b для вариант так, чтобы отрезок [a; b] вместил всю выборку; часто полагают , , но иногда a и b назначают из соображений удобства, но не слишком далеко от и .

2. Находится число k равных по длине частичных интервалов варьирования, которое зависит от объема выборки и обычно 6 £ k £ 20; рассчитывается длина интервалов группирования .

Интервальный статистический ряд распределения, представленный графически, называется гистограммой.

Гистограмма относительных частот строится следующим образом: по оси абсцисс откладываются интервалы (хi; хi+1) и на каждом из них строится прямоугольник высотой


где ; .

Площадь i-го прямоугольника .

Площадь всей гистограммы .

Замечание: гистограмма на рисунке 4 – гистограмма относительных частот.

 

 

 

Рис. 4

Можно построить гистограмму частот, высоты прямоугольников которых равны .

Пример 6. Построить гистограмму частот по данному ИСР частот:

[xi; xi+1) [100; 120) [120; 140) [140; 160) [160; 180) [180; 200]
ni

Решение. По ИСР частот находим длину частичных интервалов
= 20 и высоты прямоугольников hi = . Результаты занесем в таблицу:

[xi; xi+1) [100; 120) [120; 140) [140; 160) [160; 180) [180; 200]
ni
hi 2,5 0,5

 

Искомая гистограмма частот изображена на рис. 5.

hi
xi
xi

Рис. 5

 

В теории вероятностей гистограмме относительных частот соответствует график плотности распределения вероятностей. Распределение выборки, задаваемое интервальным статистическим рядом (табл. 3) или таблицей относительных частот (табл. 2), называется эмпирическим распределением случайной величины.

По теореме Бернулли относительная частота wi, появление события в п независимых испытаниях сходится по вероятности к вероятности рi этого события . Значит во второй строке таблицы 3 и таблицы 2 стоят приближённые значения вероятностей рi следующих событий и , поэтому распределение выборки называют эмпирическим распределением случайной величины X.







Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.233.215.231 (0.011 с.)