Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Элементы релятивистской механикиСодержание книги
Поиск на нашем сайте
В первой лекции был рассмотрен принцип относительности Галилея, который утверждал, что промежутки времени, расстояния и ускорения инвариантны т.е. одинаковы во всех инерциальных системах отсчёта. Легко показать, что инвариантны и силы, действующие на материальную точку, а следовательно второй и третий законы Ньютона. В общем случае принцип относительности Галилея можно записать следующим образом: законы механики одинаковы во всех инерциальных системах отсчёта (механический принцип относительности). После того как во второй половине ХIХ в. Максвеллом были сформулированы основные законы электродинамики, возник вопрос: распространяется ли принцип относительности, справедливый для механических явлений, и на электромагнитные процессы, одинаково во всех инерциальных системах отсчёта. В электродинамике Максвелла скорость распространения электромагнитных волн в вакууме одинакова по всем направлениям и равна с = 3.108 м/с. Но с другой стороны, в соответствии с законом сложения скоростей, вытекающем из преобразований Галилея, скорость может равняться с только в одной избранной системе отсчёта. В 1905 г. А.Эйнштейн в работе «К электродинамике движущихся тел» был дан ответ на поставленный выше вопрос. В специальной теории относительности (СТО) также как в классической механике предполагается, что время однородно, а пространство однородно и изотропно.
Первый постулат СТО (релятивистский принцип относительности Эйнштейна): в любых инерциальных системах отсчёта все физические явления при одних и тех же условиях протекают одинаково, т.е. физические законы инвариантны по отношению к выбору инерциальной системы отсчёта, а уравнения, выражающие эти законы, имеют одинаковую форму во всех инерциальных системах отсчёта. Второй постулат СТО выражает принцип инвариантности скорости света: скорость света в вакууме не зависит от движения источника света, она одинакова во всех направлениях и во всех инерциальных системах отсчёта. Опыт показывает, что скорость света в вакууме с – предельная скорость в природе: скорость любых тел, а также скорость распространения любых сигналов и взаимодействий не может превосходить с. Постоянство скорости света приводит к тому, что понятие одновременности, считающееся в ньтоновской механике абсолютным, в действительности является относительным.
Пример с поездом Световой сигнал из середины поезда для пассажира поезда (в системе отчёта К *) приходит в точки 1 и 2 одновременно, а для наблюдателя, находящегося на платформе (в системе отсчёта К) точка1 движется навстречу сигналу, а точку 2 сигналу приходится «догонять». Таким образом в разных системах отсчёта время течёт неодинаково. Чтобы описать «точечное» событие (например, распад элементарной частицы) нужно указать, в каком месте и в какой момент времени оно происходит. Эта задача может быть осуществимой, если создать в пространстве равноотстоящие координатные метки и совместить с каждой такой меткой часы. Синхронизацию часов можно сделать, посылая от одних часов к другим световой согнал. Постоянство скорости света приводит к тому, что пространство и время оказываются взаимносвязанными, образуя единое пространство-время. Эта взаимосвязь может быть представлена в виде виртуального четырёхмерного пространства
Х, у, z, ct.
Преобразования Лоренца . Подобно тому как классические представления о пространстве и времени формулируются количественно с помощью преобразований Галилея для координат и времени, новые релятивистские представления о пространстве и времени формулируются с помощью преобразований Лоренца. Пусть имеется инерциальная система отсчёта К. координаты любой точки, например, точки В, в этой системе обозначим через х, у, z, а время через t. Другая инерциальная система К* движется с постоянной скоростью относительно системы К, а оси y* и z* параллельны соответствующим осям y и z (это означает рассмотрение частных преобразований, а не общих). Начало отсчёта времени выбраны таким образом, чтобы в момент времени t = 0 точки О и О* совпадали. и в К-системе в К*-системе. Следовательно , где – некоторая константа. Аналогично: в К*-системе в К-системе и . Из равноправия систем К и К* вытекает, что коэффициент пропорциональности в обоих случаях должен быть один и тот же. Для произвольной точки В получаем Для нахождения коэффициента используем 2-ой постулат СТО. Пусть в момент времени t = t* = 0 в направлении осей х и х* посылается световой сигнал, который производит вспышку на экране в точке В. Это событие описывается координатой х и моментом t в системе К и координатой х* и моментом t* в системе К*, причём и , тогда Перемножив два последних уравнения, получаем или . Для координат получаем и , где . Для получения формулы, определяющей t по известным t* и х* исключаем координату х из исходной системы уравнений или
Так же получают
.
Зависимости ; ; и называют преобразованиями Лоренца.
В пределе, при и при β << 1 преобразования Лоренца практически не отличаются от преобразований Галилея.
Различие в течение времени в разных системах отсчёта обусловлено существованием предельной скорости распространения взаимодействий.
При выражения для становятся мнимыми. В этом проявляется то обстоятельство, что движение со скоростями, большими с невозможно.
Для запоминания удобна следующая запись .
Кинематические следствия из преобразований Лоренца
|
||||
Последнее изменение этой страницы: 2016-04-19; просмотров: 491; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.88.104 (0.006 с.) |