Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные этапы развития кремниевой микроэлектроники.↑ Стр 1 из 4Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Билет №1 Понятие истории науки, методология науки, зачем изучать дисциплину. 1. История науки — это исследование феномена науки в его истории. Наука представляет собой совокупность эмпирических, теоретических и практических знаний о Мире, полученных научным сообществом. Поскольку с одной стороны наука представляет объективное знание, а с другой — процесс его получения и использования людьми, добросовестная историография науки должна принимать во внимание не только историю мысли, но и историю развития общества в целом. Методоло́гия — это совокупность принципов и подходов исследовательской деятельности, на которые опирается исследователь (учёный) в ходе получения и разработки знаний в рамках конкретной дисциплины При исследовании новой научной проблемы или создании нового объекта техники имеется, как правило, несколько гипотез, путей решения – знания истории науки и техники позволяют выбрать закономерный путь развития. Знание истории развития науки и техники позволяет обоснованно выбирать (предложить к более глубокому анализу) правильную альтернативу для дальнейшего развития науки и техники; подсказывает аналогии (исторические), попытки решения данной проблемы в прошлом; позволяет выявлять приемы научного познания и научного творческого мышления, закономерности и законы развития науки и техники в целом. Основные этапы развития кремниевой микроэлектроники. 2. Микроэлектроника является продолжением развития полупроводниковой электроники, начало которой было положено 7 мая 1895 года, когда полупроводниковые свойства твердого тела были использованы А.С.Поповым для регистрации электромагнитных волн. Дальнейшее развитие полупроводниковой электроники связанно с разработкой в 1948 году точечного транзистора (американские ученые Шокли, Бардин, Браттейн), в 1950 году - плоскостного биполярного транзистора, а в 1952 году полевого (униполярного) транзистора. Наряду с транзисторами были разработаны и стали широко использоваться другие различные виды полупроводниковых приборов. Создание транзистора явилось мощным стимулом для развития исследований в области физики полупроводников и технологий полупроводниковых приборов. Для практической реализации развивающейся полупроводниковой электроники потребовались сверхчистые полупроводниковые и другие материалы и специальное технологическое и измерительное оборудование. Именно на этой базе стала развиваться микроэлектроника.
Следует отметить, что основные принципы микроэлектроники - групповой метод и планарная технология - были освоены при изготовлении транзисторов в конце 50 годов. Первые разработки интегральных схем (ИС) относятся к 1958 - 1960г.г. В 1961 - 1963г.г. ряд американских фирм начали выпускать простейшие ИС. В то же время были разработаны пленочные ИС. Однако некоторые неудачи с разработками стабильных по электрическим характеристикам пленочных активных элементов привели к преимущественной разработке гибридных ИС. Отечественные ИС появились в 1962 - 1963г.г. В историческом плане можно отметить 5 этапов развития микроэлектроники. Первый этап, относящийся к первой половине 60-х годов, степенью интеграции ИС до 100 элементов / кристалл и минимальным размером элементов порядка 10 мкм. Второй этап, относящийся ко второй половине 60-х годов и первой половине 70-х годов, степенью интеграции ИС от 100 до 1000 элементов/кристалл и минимальным размером элементов до 2 мкм. Третий этап, начавшийся во второй половине 70-х годов, степенью интеграции более 1000 элементов/кристалл и минимальным размером элементов до 1 мкм. Четвертый этап, разработкой сверхбольших ИС со степенью интеграции более 10000 элементов/кристалл и размерами элементов 0,1 - 0,2 мкм. Пятый, современный, этап характеризуется широким использованием микропроцессоров и микро-ЭВМ, разработанных на базе больших и сверхбольших ИС. Билет №2 Чем отличается понятие науки в древнем мире от современных представлени. 2. Наука с древних времен оставалась областью применения знаний для решения лишь практических проблем, связанных с экономикой и техникой, с одной стороны, и административной деятельностью – с другой. Восточная наука принципиально отличалась от европейской и, с точки зрения последней, таковой вообще не являлась. Она носила, в основном, религиозно-нравственный характер, была связана с чувственным опытом человека и не нуждалась в эксперименте. Ее основная проблематика лежала в гуманитарной сфере и тесно смыкалась с религиозной идеологией, философской «мудростью», сферой эзотерического знания.
Нау́ка в современном понимании это область человеческой деятельности, направленная на выработку и систематизацию объективных знаний о действительности. Основой этой деятельности является сбор фактов, их постоянное обновление и систематизация, критический анализ и, на этой основе, синтез новых знаний или обобщений, которые не только описывают наблюдаемые природные или общественные явления, но и позволяют построить причинно-следственные связи с конечной целью прогнозирования. Те теории и гипотезы, которые подтверждаются фактами или опытами, формулируются в виде законов природы или общества. Основные этапы развития СВЧ-электроники. 2. Теория радиоволн как и электромагнитного излучения вообще восходит к электродинамике Дж.Максвелла (1861-1873), обобщившей эмпирические законы электрических и магнитных явлений, дополненные его гипотезой о порождении магнитного поля переменным электрическим полем. Опыты Герца 1887-1891 с затухающими СВЧ-колебаниями на волнах до 67см.Установление квазиоптических св-в эл. магнитных волн, их отражение от металлических поверхностей, существование скин-эффекта. Теория распространения радиоволн по полым трубам (волноводам) в основных чертах была создана Дж.Рэлеем (1897) Начало развития СВЧ электродинамики в целом приходится на 30-40-е годы 20-го века, когда Г. Саусвортом и У.Бэрроу была разработана техника возбуждения различных типов волн в трубах и методика их измерений, а затем М.С.Нейманом была предложена и развита идея полых резонаторов, названных им “эндовибраторами”(1937-1938), на основе которых были разработаны триодные СВЧ генераторы. Поворотным моментом в развитии СВЧ электроники было изобретение магнетрона, ставшего впоследствии наиболее распространенным СВЧ генератором. Впервые он был предложен Хеллом в 1921, а также Ягой и Окабе - в 1928, однако это были генераторы малой мощности, не имеющие практического значения. Практическое же использование радиоволн СВЧ диапазона началось после усовершенствования магнетрона Н.Ф.Алексеевым, Е.М.Маляровым и В.П.Ильясовым (1940), которые создали мощный и эффективный генератор - многорезонаторный магнетрон, нашедший свое первое применение в радиолокации. Большой класс СВЧ приборов (ЛБВ и ЛОВ) для усиления и генерирования радиоволн был создан в конце 40-х на основе эффекта Вавилова-Черенкова. Начало эры квантовой электроники, как и эры радио, также связано с генерацией СВЧ колебаний, но уже с использованием новых принципов, основанных на явлении индуцированного (вынужденного) излучения, предсказанного А.Эйнштейном. Первый квантовый генератор (мазер), в котором электромагнитные колебания СВЧ генерировались в результате вынужденного излучения молекул аммиака на частоте 24,84 ГГц был создан А.М.Прохоровым, Н.Г.Басовым (1954) и независимо от них Ч.Таунсом, Дж.Гордоном и Х.Цайгером Развитие полупроводниковой электроники СВЧ, начало которой связано с открытием эффекта динамического отрицательного сопротивления при лавинном пробое полупроводникового диода (А.С.Тагер, 1959). Вскоре (1960-1963) были созданы генераторные лавинно-пролетные диоды (ЛПД) малой и средней мощности во всем СВЧ диапазоне. Другой класс твердотельных генераторов СВЧ, диоды Ганна, был создан благодаря открытию Дж.Ганном (1963) отрицательной дифференциальной проводимости т.н. двухдолинных полупроводников.
Билет №3 История возникновения европейской науки на примере открытий Ньютона. 1. Европейская наука впервые поставила задачу формирования научных знаний в виде законов и научных закономерностей которые проявляются в природе. На основании открытых законов в виде математических уравнений происходит создание моделей явлений происходящих в реальной природе. Мат. Модели в отличии от физ. Моделей отвечает на вопрос как проявляется физ. явление но не отвечает почему. Ньютон не только открыл свой закон но и первым из ученых стал вводить свои научные достижения в практику постоянного пользования. Ньютон сформировал закон и его математическую запись(представление знаний в удобной форме). Закон всемирного т. Описывает взаимодействие двух неподвижных тел у которых масса сосредоточены в центре масс каждого тела. Громадное значение законов Ньютона состоит в том, что они были положены в основу классической динамики, которая в течении более чем 200 лет доминировала во всех областях науки. Европейская наука в отличии от предыдущих этапов развития создала систему получения накопления и практической реализации знаний. Билет № 4 Билет №5 Понятие точности физических законов... 1. Физические законы выражают ы математической форме количественные связи между различными физическими величинами. Они устанавливаются на основе обобщения опытных, полученных экспериментальным путем, данных и отражают объективные закономерности, существующие в природе. Поэтому принципиально важным является то, что физ. Законы не являются абсолютно точными, их точность возрастает с развитием науки и техники. Законы Ньютона справедливы только для достаточно массивных тел, двигающихся со скоростями, значительно меньшими скорости света. Закон всемирного тяготения применим только для материальных точек; для тел, размеры которых значительно меньше, чем расстояние между ними;
Рентгеновские приборы Совокупность оборудования для получения и использования рентгеновского излучения. В зависимости от назначения Р. а. делят на медицинские и технические. Рентгеновские аппараты состоят из одного или нескольких рентгеновских излучателей (рентгеновских трубок); питающего устройства, обеспечивающего электрической энергией рентгеновский излучатель; устройства для преобразования рентгеновского излучения, прошедшего через исследуемый объект, в видимое изображение, доступное для наблюдения, анализа или фиксации (экран, рентгеновская кассета с рентгенографической пленкой, усилитель рентгеновского изображения, телевизионное видеоконтрольное устройство, видеомагнитофон, фотокамеры, кинокамеры и др.); штативных устройств, служащих для взаимной ориентации и перемещения излучателя, объекта исследования и приемника излучения: систем защиты и управления Р. а. Для формирования потока излучения применяют диафрагмы, тубусы, фильтры, отсеивающие растры, формирующие излучение в пространстве коллиматоры; автоматические рентгеноэкспонометры и стабилизаторы яркости.
Медицинские Р. а. делятся на рентгенодиагностические и рентгенотерапевтические. Рентгеновские аппараты применяются не только в медицине, но и в самых разных отраслях промышленности. Возможности рентгеновского излучения позволяют использовать данные аппараты в качестве оборудования неразрушающего контроля при самых разных работах. В частности, рентгеновское оборудование применяется для контроля качества сварных швов при строительстве водопроводов и газопроводов, для контроля качества сварки железнодорожных рельсов. Одной из сфер применения современного рентгеновского оборудования является реставрация предметов живописи и других произведений изобразительного искусства.
Билет №7 Билет №8 1. Понятие «энергия», «пространство» и результат их взаимодействия. Раскрыть эти понятия и показать их взаимодействие на практических примерах взаимосвязи. Эне́ргия — скалярная физическая величина, являющаяся единой мерой различных форм движения и взаимодействия материи, мерой перехода движения материи из одних форм в другие. Введение понятия энергии удобно тем, что в случае, если физическая система является замкнутой, то её энергия сохраняется в этой системе на протяжении времени, в течение которого система будет являться замкнутой. Это утверждение носит название закона сохранения энергии. Все материальные тела имеют протяженность и занимают определенное место в пространстве. Эта позиция еще в древнейшие времена была проверена экспериментально. И таким образом первые характеристики материальных тел выражались в виде геометрических размеров. Этими же характеристиками определяется пространство. Первая формулировка взаимосвязи геометрических размеров с формой тела была дана Евклидом 2000 лет назад. В геометрии Евклида понятие размера тела представлялось надменно, независимо от скорости перемещения тела. С тех пор ученые поделились на две части (зависимость и независимость с пространсвом). E=mc2=mvc2=Ek+En=mc2/2+En В настоящее время можно считать, что пространство не может существовать само по себе. Однако, для практического изучения нас мира, оба подхода (независимость и зависимость) оказались приемлемы и высокоэффективны для решения своих задач. Первой появилась Декартова система координат, которая возникла в виде трехмерного пространства. Формирование такой методики изучающего пространства, привело к целому ряду понятий.
1) материальная точка – это абстракция, которая позволяет ввести в рассмотрение некоторую гепотетическую первочастицу, как часть материального мира. Рассмотрение этой системы координат позволило: 1) определить координаты любого предмета, 2) сделать вывод, что геометрические размеры не меняются от расположения в пространстве. В связи с тем, что размер объекта не меняется в декартовой системе, его длинна является инвариантой и может быть выражена следующим уравнением. l2= Δx2+ Δy2+ Δz2
Билет №9 Методология изучения пространства... 1. Весьма важным для понимания законов природы является принцип инвариантности относительно сдвигов в пространстве и во времени, т. е. параллельных переносов начала координат и начала отсчета времени. Он формулируется так: смещение во времени и в пространстве не влияет на протекание физических процессов. Инвариантность непосредственно связана с симметрией, представляющей собой неизменность структуры материального объекта относительно его преобразований, т. е. изменения ряда физических условий. В широком смысле симметрия означает инвариантность как неизменность свойств системы при некотором изменении (преобразовании) ее параметров. Наглядным примером пространственных симметрий физических систем является кристаллическая структура твердых тел. Симметрия кристаллов - закономерность атомного строения, внешней формы и физических свойств кристаллов, заключающаяся в том, что кристалл может быть совмещен с самим собой путем поворотов, отражений, параллельных переносов и других преобразований симметрии. Симметрия свойств кристалла обусловлена симметрией его строения. Однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета. Из свойства симметрии пространства - его однородности следует закон сохранения импульса: импульс замкнутой системы, сохраняется, т. е. не изменяется с течением времени. Однородность, времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать. Из однородности времени следует закон сохранения механической энергии, в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т. е. не изменяется со временем.
Билет № 10 Связь массы и энергии. Привести конкретные примеры. 1. Связь между энергией и массой неизбежно следует из закона сохранения энергии и того факта, что масса тела зависит от скорости его движения. Это видно из простого примера. При нагревании газа в сосуде ему сообщается определенная энергия. Скорость хаотического теплового движения молекул зависит от температуры, и увеличивается с нагреванием газа. Увеличение скорости движения молекул согласно формуле означает увеличение массы всех молекул. Следовательно, масса газа в сосуде увеличивается при увеличении его внутренней энергии. Между массой газа и его энергией существует связь. Формула Эйнштейна. С помощью» теории относительности Эйнштейн установил замечательную по своей простоте и общности формулу связи между энергией и массой: E=mc2 Энергия тела или системы тел равна массе, умноженной на квадрат скорости света. Если изменяется энергия системы, то изменяется и ее масса. Так как коэффициент очень мал, то заметные изменения массы возможны лишь при очень больших изменениях энергии. При химических реакциях или при нагревании в обычных условиях изменения энергии настолько малы, что соответствующие изменения масс не удается обнаружить на опыте. Лишь при превращениях атомных ядер и элементарных частиц изменения энергии оказываются настолько большими, что изменение массы уде заметно.
Билет 11 Взаимосвязь трехмерного и четырехмерного пространства как пример появления понятия времени. Современная наука представляет окружающий нас мир в форме трёхмерного пространства-времени (четырёхмерного пространства). Дать определение понятию «время» достаточно сложно, несмотря на очевидность его существования. Термин «стрела времени» характеризует его как ось, направленную из прошлого в будущее. Строго говоря, считать время четвертым измерением пространства нельзя, т.к. по правилам математики оно должно быть одновременно перпендикулярно всем трем имеющимся координатным осям. Созданием трёхмерного пространства-времени (четырехмерного пространства) мы обязаны Генриху Минковскому. В 1908 году немецкий математик, развивая идеи теории относительности А.Эйнштейна заявил: «Отныне пространство само по себе и время само по себе должны обратиться в фикции, и лишь некоторый вид соединения обоих должен ещё сохранить самостоятельность». Понятно, что теоретическая физика на тот момент времени оказалась в тупике и дальнейшие пути развития были весьма туманны. Нужно было что-то делать и поэтому за предложенную гипотезу ухватились, как за промежуточный вариант выхода из кризиса. Известная поговорка гласит, что нет ничего более постоянного, чем временные решения. К сожалению, ничего альтернативного предложено не было, и физика пошла по предложенному пути, как по единственно возможному. Признание научным сообществом данной гипотезы вызвало бурное развитие физики — многомерные пространства, кротовые норы, путешествия во времени и т.д. Автор этих строк считает верхом мудрости современной физики следующий научный перл — «семимерная сфера в одиннадцатимерном пространстве»... Возникает вопрос: чего стоят «достижения» современной науки с таким сомнительным фундаментом — теория относительности, квантовая механика (которую не понимают даже её авторы), чёрные дыры, теории Большого Взрыва и расширения Вселенной, супергравитация, теория струн, тёмная материя и тёмная энергия..? Нарастающая в прессе критика существующего положения свидетельствует о том, что возникший более ста лет тому назад кризис в физике так и не был преодолен. Причина одна — безальтернативная гипотеза трёхмерного пространства-времени (четырёхмерного пространства) по-прежнему остается фундаментом здания современной физики. Общая теория относительности (ОТО), опираясь на принцип эквивалентности сил гравитации и инерции, обобщила понятие четырёхмерного пространства-времени Минковского на случай неинерциальных систем отсчёта и полей тяготения. Метрические свойства пространства-времени в каждой точке под влиянием поля тяготения становятся различными. Влияние гравитационного поля на свойства четырёхмерного пространства-времени описывается метрическим тензором. Относительное замедление времени для двух точек слабого постоянного гравитационного поля равно разности гравитационных потенциалов, делённой на квадрат скорости света (Гравитационное красное смещение). Чем ближе к массивному телу находятся часы, тем медленнее они отсчитывают время, на горизонте событий Шварцшильдовской чёрной дыры, с точки зрения Шварцшильдовского наблюдателя, ход времени полностью останавливается. Билет 12 Понятие симметрии в "узком" и "широком" смыслах этого слова. Понятие симметрии физических законов. СИММЕТРИЯ(от греч. συμμετρία соразмерность)всеобщая особенность любых процессов, тел и явлений, обычнонепосредственно связываемая с их структурностью. В совр. естествознании существует два понимания симметрии – вузком и широком смысле слова. В более узком, исторически первом пониманиисимметрии считают свойство материального объекта совмещаться с самим собой при обмене местами совместно или (и) зеркально равных его частей. Симметричные предметы нельзя назвать равными в узком смысле слова. Их называют зеркально равными. Введем определение: Зеркально равными телами (или фигурами) называются тела (или фигуры) в том случае, если при надлежащем их смещении они могут образовать две половины зеркально симметричного тела. СИММЕТРИЯ в широком смысле инвариантность (неизменность) структуры, свойств, формы материального объекта относительно его преобразований (т. е. изменений ряда физических условий). Симметрия лежит в основе законов сохранения. Симметрия в широком или узком смысле является той идеей, посредством которой человек на протяжении веков пытается постичь и создать порядок, красоту и совершенство. Так свойства пространства и времени ведут к симметрии, к закономерности в природе как проявлению ее гармонии. Взаимодействие - способ, которым в природе поддерживаются различные симметрии.
СИММЕТРИЯ ФИЗИЧЕСКИХ ЗАКОНОВ Возьмем в качестве иллюстрации закон всемирного тяготения, утверждающий, что сила взаимного притяжения двух тел обратно пропорциональна квадрату расстояния между ними. Напомню, что тела реагируют на силу изменением скорости в направлении силы. Возьмем теперь два тела, скажем, планету, вращающуюся вокруг Солнца, и перенесем эту пару в другую часть Вселенной. Расстояние между ними, естественно, не изменится и, следовательно, не изменяется и действующие между ними силы. Более того, в новой ситуации сохранится и скорость движения и все пропорции происходящих изменений, и в одной системе все будет происходить точно так же, как и в другой. Уже то, что в законе всемирного тяготения используется "расстояние между двумя телами", а не какое-то расстояние до центра Вселенной, показывает, что этот закон допускает переносы в пространстве. Вот в этом и заключается одна из симметрий физических законов - симметрия относительно пространственных переносов. Билет 13 Симметрия физических законов как методологическая основа проверки истинности полученных знаний. Привести примеры. Простейшим примером симметрии такого рода - может служить симметрия относительно пространственного переноса. Если построить любую установку и при ее помощи поставить какой-нибудь опыт, а затем взять и построить точно такую же установку для точно такого же эксперимента с точно таким же объектом, но в другом месте, не здесь, а там, т. е. просто перенести наш опыт в другую точку пространства, то окажется, что во время обоих опытов происходит в точности одно и то же. Но если представить себе, что вместе с установкой я переношу и нашу планету, то система будет работать по-прежнему. В том-то и дело - нужно переносить сразу все, что имеет хоть малейшее значение. Это правило звучит довольно нелепо. В самом деле, можно просто перенести экспериментальную установку, а если она не заработает, сказать, что мы перенесли еще не все, - и вы оказываетесь правы и в том и в другом случае. Но на самом деле это не так, ибо вовсе не очевидно, что мы обязательно будем правы. Интереснейшее свойство природы как раз и заключается в том, что всегда удается перенести достаточно материала, чтобы установка вела себя, как и раньше. А это уже не пустые слова. Билет 14 Билет № 15 Силовая электроника. 2. Силовой электроникой называют область науки и техники, которая решает проблему создания силовых электронных приборов, а также проблемы получения значительной электрической энергии, управления мощными электрическими процессами и преобразования электрической энергии в достаточно большую энергию другого вида при использовании в качестве основного инструмента этих приборов. Наиболее распространенными типовыми устройствами силовой электроники являются: •бесконтактные переключающие устройства переменного и постоянного тока (прерыватели), предназначенные для включения низ выключения нагрузки в пени переменного низ постоянного тока и. иногда, для регулирования мощности нагрузки: •выпрямители, преобразующие переменное напряжение в напряжение одной полярности (однонаправленное); •инверторы, преобразующие постоянное напряжение в переменное: •преобразователи частоты, преобразующие переменное напряжение одной частоты в переменное напряжение другой частоты:
•преобразователи постоянного напряжения (конверторы), преобразующие постоянное напряжение одной величины в постоянное напряжение другой величины; •преобразователи числа фаз. преобразующие переменное напряжение с одним числом фаз в переменное напряжение с другим числом фаз (обычно однофазное напряжение преобразуется в трехфазное или трехфазное — в однофазное); •компенсаторы (корректоры коэффициента мощности), предназначенные для компенсации реактивной мощности в питающей сети переменного напряжения и дтя компенсации искажений формы тока и напряжения.
По существу устройства силовой электроники выполняют преобразование мощных электрических сигналов. Поэтому силовую электронику называют также преобразовательной техникой.
Устройства силовой электроники как типовые, так и специализированные, используются во всех областях техники и практически в любом достаточно сложном научном оборудовании
В качестве иллюстрации укажем некоторые объекты, в которых устройства силовой электроники выполняют важные функции: •электропривод (регулирование скорости и момента вращения и др.); •установки для электролиза (цветная металлургия, химическая промышленность); •электрооборудование для передачи электроэнергии на большие расстояния на постоянном токе; •электрометаллургическое оборудование (электромагнитное перемешивание металла и др.); •электротермические установки (индукционный нагрев и др.); •электрооборудование для зарядки аккумуляторов: •компьютеры; •электрооборудование автомобилей и тракторов; •электрооборудование самолетов и космических аппаратов: •устройства радиосвязи: •оборудование для телевещания: Билет №1 Понятие истории науки, методология науки, зачем изучать дисциплину. 1. История науки — это исследование феномена науки в его истории. Наука представляет собой совокупность эмпирических, теоретических и практических знаний о Мире, полученных научным сообществом. Поскольку с одной стороны наука представляет объективное знание, а с другой — процесс его получения и использования людьми, добросовестная историография науки должна принимать во внимание не только историю мысли, но и историю развития общества в целом. Методоло́гия — это совокупность принципов и подходов исследовательской деятельности, на которые опирается исследователь (учёный) в ходе получения и разработки знаний в рамках конкретной дисциплины При исследовании новой научной проблемы или создании нового объекта техники имеется, как правило, несколько гипотез, путей решения – знания истории науки и техники позволяют выбрать закономерный путь развития. Знание истории развития науки и техники позволяет обоснованно выбирать (предложить к более глубокому анализу) правильную альтернативу для дальнейшего развития науки и техники; подсказывает аналогии (исторические), попытки решения данной проблемы в прошлом; позволяет выявлять приемы научного познания и научного творческого мышления, закономерности и законы развития науки и техники в целом. Основные этапы развития кремниевой микроэлектроники. 2. Микроэлектроника является продолжением развития полупроводниковой электроники, начало которой было положено 7 мая 1895 года, когда полупроводниковые свойства твердого тела были использованы А.С.Поповым для регистрации электромагнитных волн. Дальнейшее развитие полупроводниковой электроники связанно с разработкой в 1948 году точечного транзистора (американские ученые Шокли, Бардин, Браттейн), в 1950 году - плоскостного биполярного транзистора, а в 1952 году полевого (униполярного) транзистора. Наряду с транзисторами были разработаны и стали широко использоваться другие различные виды полупроводниковых приборов. Создание транзистора явилось мощным стимулом для развития исследований в области физики полупроводников и технологий полупроводниковых приборов. Для практической реализации развивающейся полупроводниковой электроники потребовались сверхчистые полупроводниковые и другие материалы и специальное технологическое и измерительное оборудование. Именно на этой базе стала развиваться микроэлектроника. Следует отметить, что основные принципы микроэлектроники - групповой метод и планарная технология - были освоены при изготовлении транзисторов в конце 50 годов. Первые разработки интегральных схем (ИС) относятся к 1958 - 1960г.г. В 1961 - 1963г.г. ряд американских фирм начали выпускать простейшие ИС. В то же время были разработаны пленочные ИС. Однако некоторые неудачи с разработками стабильных по электрическим характеристикам пленочных активных элементов привели к преимущественной разработке гибридных ИС. Отечественные ИС появились в 1962 - 1963г.г. В историческом плане можно отметить 5 этапов развития микроэлектроники. Первый этап, относящийся к первой половине 60-х годов, степенью интеграции ИС до 100 элементов / кристалл и минимальным размером элементов порядка 10 мкм. Второй этап, относящийся ко второй половине 60-х годов и первой половине 70-х годов, степенью интеграции ИС от 100 до 1000 элементов/кристалл и минимальным размером элементов до 2 мкм. Третий этап, начавшийся во второй половине 70-х годов, степенью интеграции более 1000 элементов/кристалл и минимальным размером элементов до 1 мкм. Четвертый этап, разработкой сверхбольших ИС со степенью интеграции более 10000 элементов/кристалл и размерами элементов 0,1 - 0,2 мкм. Пятый, современный, этап характеризуется широким использованием микропроцессоров и микро-ЭВМ, разработанных на базе больших и сверхбольших ИС. Билет №2
|
|||||||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 1244; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.59.183.77 (0.022 с.) |