Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Второе начало термодинамики.Содержание книги
Поиск на нашем сайте
Второе начало термодинамики можно сформулировать разными эквивалентными способами. Однако для этого надо ввести несколько новых понятий. Начать можно с рассмотрения цикла и машины Карно. В машине Карно тепло от нагревателя передавалось рабочему телу, которое совершало полезную работу А и одновременно передавало тепло холодильнику (при этом температура нагревателя уменьшается, а температура холодильника – возрастает). Ясно, что лучше та тепловая машина, у которой меньше, т.е. КПД больше. Но еще в 1824 году Карно пришел к выводу, что не может равняться нулю, то есть построить идеальную тепловую машину невозможно. Такая машина была бы вечным двигателем второго рода, а все экспериментальные попытки построить такую машину оказывались неудачными. Таким образом, первая формулировка Второго начала термодинамики звучит как утверждение: «Невозможно построить вечный двигатель второго рода, который работает за счет тепла , взятого от нагревателя. Обязательно должен быть холодильник, куда бы сбрасывалось некоторое количество тепла . Любая тепловая машина будет работать только до тех пор, пока , а ». Так как , то можно сказать, что тепловое движение неустранимо. При выравнивании этих температур должна была бы наступить «Тепловая смерть Вселенной», то есть невозможность работы никаких тепловых машин. С этим определением Второго начала связано утверждение: «При тепловом контакте двух тел тепло переходит от более нагретого тела к менее нагретому». Это тоже формулировка Второго начала термодинамики. Отсюда следует еще одна формулировка Второго начала. Чтобы понять её, надо вначале ввести понятия обратимого и необратимого процессов. Пусть имеется замкнутый цикл переходов между термодинамическими состояниями типа . Назовем его «прямым» замкнутым циклом. Цикл называется «обратным». Если можно переводить систему и прямым образом, и обратным, то говорят, что в такой системе существуют обратимые процессы. В противном случае процесс необратимый. Обратимость процессов связана с понятием энтропии (см. определение ниже). В этом случае Второе начало утверждает, что энтропия замкнутой системы не убывает (остается постоянной у обратимых процессов и возрастает у остальных процессов). Сразу заметим, что у подсистемы, т.е. у части замкнутой системы энтропия может убывать с одновременным ростом энтропии всей системы.
Энтропия. Энтропия – это мера хаотичности параметров системы. Её следует рассматривать как один из термодинамических параметров системы. Общее представление об энтропии можно получить на таком примере. Пусть на дно мешка положили слой черных, а поверх – слой белых шаров. Это – упорядоченная система. Мешок – замкнутая система, шары не выходят из мешка. Если на мешок воздействует внешняя сила (например, встряхивание при перевозке из одного города в другой), то шары перемешиваются случайным образом, упорядоченность нарушается. Энтропия при этом возрастает. Сколько бы мы ни трясли мешок, шары не рассортируются к начальному состоянию. Процесс необратимый. Можно открыть мешок и рассортировать шары руками. Мешок в этом случае становится подсистемой системы «мешок + окружающая среда» или системы «мешок + наши руки». При этом энтропия шаров уменьшается с одновременным увеличением полной энтропии. Пример с перемешиванием шаров иллюстрирует закон возрастания энтропии. Данный пример – термодинамический подходя» к понятию «энтропия». Есть еще подход «статистический». Он делает смысл энтропии более понятным (см. дальше, в разделе «Элементы статистической физики») и позволяет доказать закон возрастания энтропии Введение термодинамического подхода к энтропии впервые осуществлено Клаузиусом и сейчас имеет по большей мере исторический интерес. Рассматривая обратимые процессы, во многом интуитивно, Клаузиус ввел связь между изменением энтропии и количеством передаваемого системе тепла , . Здесь не понятно, какая температура имеется в виду, ведь она может изменяться на протяжении процесса. Более строгое равенство Клаузиуса должно быть записано в виде . Дифференциальная форма равенства подразумевает, что оно относится к бесконечно малому изменению термодинамического состояния, происходящему, естественно, при постоянной температуре. Если же процесс необратимый, то равенство должно быть заменено неравенством . Последнее называют неравенством Клаузиуса. Заметим, что в указанных формулах фигурирует приращение энтропии, а не само её значение. Поэтому мы должны утверждать, что энтропия определена с точностью до произвольной константы, например, начального значения. Здесь хороша аналогия см потенциальной энергией. Другой подход к определению самой энтропии предлагает теорема Нернста: энтропия любой термодинамической системы равна нулю при температуре абсолютного нуля. Не очень хорошая теорема, поскольку хаотическое движение частиц неустранимо и, значит, равенство нулю абсолютной температуры невозможно.
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 397; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.129.195.254 (0.006 с.) |