Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Теория ожидаемой полезности неймана-моргенштерна и результаты ее тестирования.Содержание книги
Поиск на нашем сайте
Теория основывается на аксиомах: Аксиома сравнимости (полноты). Для всего множества S неопределенных альтернатив (возможных исходов) индивид может сказать, что либо исход х предпочтительнее исхода у (х > у), либо у > х, либо индивид безразличен в отношении к выбору между х и у (х = у). Аксиома транзитивности (состоятельности). Если х > у и у > z, то х > z. Если х = у и у = z, то х = z.
Аксиома измеримости. Если х > у = z или х = у > z, то существует единственная вероятность α, такая, что у = G (x, z: α).
Аксиома ранжирования. Если альтернативы у и и находятся по предпочтительности между альтернативами х и z и можно построить игры, такие, что индивид безразличен в отношении к выбору между у и G (x, z: α1), a также к выбору между и и G(x, z: α2), то при α1 > α2, у > и.
При названных предположениях американскими учеными Нейманом и Моргенштерном было показано, что лицо принимающее решение (ЛПР) при принятии решения будет стремиться к максимизации ожидаемой полезности. Другими словами, из всех возможных решений он выберет то, которое обеспечивает наибольшую ожидаемую полезность.
Сформулируем определение полезности по Нейману-Моргенштерну.
Полезность – это некоторое число, приписываемое лицом, принимающим решение, каждому возможному исходу.
Функция полезности Неймана-Моргенштерна для ЛПР показывает полезность, которую он приписывает каждому возможному исходу. У каждого ЛПР своя функция полезности, которая показывает его предпочтение к тем или иным исходам в зависимости от его отношения к риску. Ожидаемая полезность события равна сумме произведений вероятностей исходов на значения полезностей этих исходов.
Проиллюстрируем практическую реализацию введенных понятий на примере расчета ожидаемой денежной оценки (ОДО) и сопоставления этого значения с полезностью.
Для принятия решения в случае небезразличия ЛПР к риску необходимо уметь оценивать значения полезности каждого из допустимых исходов. Дж. Нейман и О. Моргенштерн предложили процедуру построения индивидуальной функции полезности, которая (процедура) заключается в следующем: ЛПР отвечает на ряд вопросов, обнаруживая при этом свои индивидуальные предпочтения, учитывающие его отношение к риску. Значения полезностей могут быть найдены за два шага.
Шаг 1. Присваиваются произвольные значения полезностей выигрышам для худшего и лучшего исходов, причем первой величине (худший исход) ставится в соответствие меньшее число.
Шaг 2. Игроку предлагается на выбор: получить некоторую гарантированную денежную сумму V, находящуюся между лучшим и худшим значениями S и s, либо принять участие в игре, т.е. получить с вероятностью р наибольшую денежную сумму S и с вероятностью (1 – р) – наименьшую сумму s. При этом вероятность следует изменять (понижать или повышать) до тех пор, пока ЛПР станет безразличным в отношении к выбору между получением гарантированной суммы и игрой.
Пусть указанное значение вероятности равно р0. Тогда полезность гарантированной суммы определяется как среднее значение (математическое ожидание) полезностей наименьшей и наибольшей сумм, т.е.
U (V) = p0 U (S) + (1 – p0) U(s). (12.1) Таким образом, если определена шкала измерения, то может быть построена функция полезности ЛПР.
Парадокс Алле. Парадокс демонстрирует неприменимость теории максимизации ожидаемой полезности в реальных условиях риска и неопределённости. Автор корректно, с позиций математики, объясняет суть парадокса. Парадокс демонстрирует, что реальный агент, ведущий себя рационально, предпочитает не поведение получения максимальной ожидаемой полезности, а поведение достижения абсолютной надежности.
Сам Алле провёл психологический эксперимент, описанный ниже, и получил парадоксальные результаты.
Индивидам предлагают выбор по одному решению из двух пар рискованных решений.
В первом случае в ситуации A есть 100 % уверенность в получении выигрыша в 1 млн франков, а в ситуации B имеется 10 % вероятность выигрыша в 5 млн франков, 89 % — в 1 млн франков и 1 % — не выиграть ничего.
Во втором случае тем же индивидам предлагается сделать выбор между ситуацией C и D. В ситуации C имеется 10 % вероятности выигрыша в 5 млн франков и 90 % не выиграть ничего, а в ситуации D 11 % составляет вероятность выигрыша в 1 млн франков и 89 % — не выиграть ничего. Алле установил, что значительное большинство индивидов в этих условиях предпочтет выбор ситуации A в первой паре и ситуации C во второй. Этот результат воспринимался как парадоксальный. В рамках существовавшей гипотезы индивид, отдавший предпочтение выбору А в первой паре, должен выбрать ситуацию Д во второй паре, а остановивший выбор на В должен во второй паре отдать предпочтение выбору С. Алле математически точно объяснил этот парадокс. Его основной вывод гласил, что рационально действующий агент предпочитает абсолютную надежность.
Парадокс можно сформулировать в виде выбора между двумя вариантами, в каждом из которых с некоторой вероятностью достаётся та или иная сумма денег: Здесь X — неизвестная выбирающему сумма.
Какой выбор будет более разумным? Результат останется прежним, если «неизвестная сумма» X — это 100 миллионов? Если это «ничего»?
Математическое ожидание в первом варианте равно , а во втором: , поэтому математически второй вариант B выгоднее независимо от значения X. Но люди боятся нулевого исхода в варианте B и поэтому чаще выбирают A. Однако если , то психологический барьер устраняется, и большинство уходит от варианта A.
Теоретические концепции поведения экономических агентов в условиях неопределенности и их тестирование. «Рамочные» эффекты. Принимая решение в условиях неопределенности, индивид всегда участвует в своего рода лотерее. Например, покупая некую акцию, инвестор может как получить значительный выигрыш, так и лишиться инвестированных средств Обозначив через xi исходы в такого рода лотерее, мы можем записать эту лотерею следующим образом L1 р о х1 (1 - р) о х2, что означает: "Индивид с вероятностью р получит приз х1 и с вероятностью (1 - р) - приз х2 " Альтернативой участию в этой лотерее может быть покупка иной акции L2 q о х3 (1 - q) о х4 Какую из этих двух лотерей предпочтет индивид? При совпадении перечня исходов(призов) в обеих лотереях (х1= х3; х2= х4 ) ответ на этот вопрос может быть обусловлен вероятностным распределением выигрышей. Изменив вероятности получения призов в сторону увеличения вероятности получения лучшего приза, мы получим новую лотерею, которая будет стохастически доминировать исходную (более подробно о стохастическом доминировании будет сказано позднее). Но это отнюдь не снимает проблему ранжирования лотерей при отсутствии четко выраженного стохастического доминирования, столь частого при большем количестве возможных исходов. Лотереи. Сведение сложных лотерей к простым. Простая лотерея может быть описана как вектор вероятностей выпадения возможных исходов: L(р)=(р1, р2,..., рn), где ip i=1 и p i ≥ 0 для всех i =1,..., n. Геометрически простая лотерея соответствует точке на (n -1) -мерном симплексе D. Рис.1.1. n = 2
Рис.1.2. n = 3
Сложные лотерии (compound lotteries) - в отличие от простых лотерей - допускают возможность рассмотрения в качестве возможных исходов не только получение индивидом неких конкретных "призов", но так называемых "вторичных" лотерей. Сложной, например, является лотерея, включающая в перечень возможных призов билеты следующего тура этой лотереи. Математически сведение сложной лотереи к простой, т.е. определение вероятностей получения конечных призов, может быть осуществлено путем расчета сумм условных вероятностей, т.е. вероятностей получения этих призов во вторичных лотереях, взвешенных по вероятностям выпадения вторичных лотерей: p(xi) = ip(xi Lj) p(Lj). Например, если призами в первичной лотерее выступают лотереи L1=(0.6, 0.4) и L2=(0.2, 0.8), причем вероятность выигрыша L1 равна 2/3, а вероятность выигрыша L2 равна соответственно 1/3, то такая сложная лотерея будет эквивалентна простой лотерее с вероятностями получения конечных призов (0.6 х (2/3) + 0.2 х (1/3), 0.4 х (2/3) + 0.8 х (1/3)) = (14/30, 16/30). Графически этот процесс сведения этой сложной лотереи к простой представлен на рис. 1.3.а, а следующий рисунок 1.3.б иллюстрирует сходную процедуру в предположении существования (в каждой из двух вторичных лотерей) уже не двух, а трех конечных призов.
Допустимость подобного сведения сложных лотерей к простым следует оговорить как отдельную предпосылку дальнейшего анализа (RCLA - the reduction of compound lotteries axiom), ибо с точки зрения отдельного индивида различные сложные лотереи, сводимые к одной и той же простой лотерее, могут оцениваться весьма различным образом. В частности, Джошуа Ронен (Ronen,1973) убедился, что даже простая перестановка двух этапов лотереи влияет на ее привлекательность для индивидов,а именно, семидесятипроцентный шанс получить 100 долл с вероятностью 30 % оказался более привлекательным для опрашиваемых, чем тридцатипроцентный шанс получить 100 долл с вероятностью 70 %. Но подобного рода соображения мы пока оставим в стороне, и в дальнейшем будем полагать эквивалентными различные сложные лотереи, сводимые к одной и той же простой лотерее.
|
||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 1370; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.18.135 (0.011 с.) |