Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устройства со стоячей волной и устройства с бегущей волнойСодержание книги
Поиск на нашем сайте
По типу волны в резонаторе термоакустические устройства делятся на два вида, на устройства с бегущей волной и на устройства со стоячей волной. Бегущая волна
Гифка 1. График давления, скорости газа и изображение его смещения в бегущей волне Бегущая волна бежит по резонатору на гифке 1 вправо. В бегущей волне колебания давления и скорости газа находятся в фазе. При этом происходит перенос энергии в направлении движения волны. Розовыми овалами на гифке 1 изображены диаграммы зависимости давления от координаты элементарных порций газа в различных точках внутри резонатора. Акустическая мощность, переносимая волной вправо численно равна площади розового овала, то есть площади PX диаграммы. Как видно, овалы в разных точках одинаковые, что говорит о том, что мощность волны при движении по резонатору не меняется. То есть, здесь не учитывается затухание волны при движении по резонатору. Бегущая волна может распространяться в резонаторе, представляющем собой закольцованную трубу. При этом длина волны, соответствующая резонансной частоте такого резонатора будет равна длине самой трубы.
Гифка. 2. Устройство с бегущей волной Стоячая волна Стоячая волна – это сумма двух бегущих волн, распространяющихся в противоположных направлениях. Такая волна может возникнуть при отражении, от какого либо предмета и возвращении к источнику звука.
Гифка 3. График давления, скорости газа и изображение его смещения в стоячей волне На гифке 3 изображена стоячая волна в полуволновом резонаторе, то есть в резонаторе с длиной, равной половине длины волны. Можно мысленно представить, что резонатор внизу на гифке 3 представляет собой трубу, заглушенную с двух сторон заглушками. При этом кто то, допустим, трясёт трубу, и газ внутри болтается между двух концов трубы. Так как концы трубы заглушены, то скорость газа на поверхности заглушек может быть только нулевая (что и видно на графике velocity). То есть на концах трубы возникают узлы скорости. Одновременно с этим видно, что на заглушках будут наблюдаться наибольшие по амплитуде колебания давления (антиузлы или пучности давления), а узел давления (точка, где нет колебаний) будет в середине трубы. В стоячей волне разность фаз между колебаниями давления и колебаниями скорости составляют 90 градусов. При этом PX диаграммы во всех точках резонатора представляют собой линии, то есть фигуры, не имеющие площади. Соответственно переноса энергии в стоячей волне не происходит, ни в правую, ни в левую сторону. Но у самой волны естественно энергия при этом есть. Стоячую волну в полуволновом резонаторе можно создать, поместив динамик или поршень на одном из его концов, производя колебания на резонансной частоте резонатора. А поместив дополнительно в резонатор теплообменный аппарат, можно создать термоакустический холодильник.
Гифка 4. Стоячая волна в полуволновом резонаторе. Слева в резонаторе расположен так называемый стек – аналог регенератора в двигателе с бегущей волной Из-за рассеяния акустической энергии в резонаторе и в теплообменном аппарате получившаяся волна не будет чисто стоячей. Будет нужна постоянная подпитка энергией от поршня. На гифке 4 видно, что, так как поршень колеблется, то и газ у поршня колеблется вместе с ним. Возникает перенос акустической энергии от поршня в резонатор, который компенсирует потери энергии в резонаторе. Таким образом, хоть получившаяся волна очень близка к стоячей, но при более тонком рассмотрении представляет собой сумму стоячей и бегущей волны. В реальных термоакустических устройствах тоже никогда не бывает чисто бегущей либо чисто стоячей волны. Волна всегда представляет собой нечто промежуточное, но при этом, если волна в устройстве очень похожа на стоячую, то устройство называют устройством со стоячей волной, а если волна похожа на бегущую, то называют устройством с бегущей волной. Основные размеры 3.1) Длина корпуса В устройствах со стоячей волной длина корпуса обычно равна половине длины волны. Например, для типичной для данного вида устройств частоты колебаний 300 Гц, длина корпуса при работе на воздухе составит около 0,56 метра, а при работе на гелии 1,65 метра.
Рис. 5.Основные размеры устройства со стоячей волной В устройствах с бегущей волной длина волны примерно равна длине корпуса. Типичная частота колебаний в таких устройствах – 100 Гц, при этом длина корпуса при работе на воздухе составит 3,4 метра, а при работе на гелии – 10 метров.
Рис. 6. Основные размеры устройства с бегущей волной 3.2) Диаметр корпуса Резонатор представляет собой обычную трубу, желательно с гладкими стенками.
Гифка 5. Взаимодействие колеблющегося газа со стенкой резонатора Если рассмотреть распространение акустической волны в резонаторе достаточно крупного диаметра (примерно от сантиметра и более), то выясняется, что газ в волне взаимодействует со стенкой резонатора далеко не во всём своём объёме, а только в небольшом приграничном слое, расположенном у стенки резонатора. На гифке 5 показано, что при колебаниях газа у стенки резонатора образуется необычная деформация скорости газа из-за трения о стенку. На поверхности стенки скорость газа нулевая, что обычно принято как граничное условие в большинстве гидродинамических задач. Глубина вязкостного проникновения Глубина вязкостного проникновения является оценкой величины слоя, активно взаимодействующего со стенкой корпуса. Например, для акустической волны, распространяющейся в воздухе с нормальными условиями, с частотой 70 Гц, глубина вязкостного проникновения составляет 0,27 мм. На гифке 5 видно, что взаимодействие стенки и газа наблюдается при величинах и больших, чем глубина вязкостного проникновения, но, тем не менее, область достаточно активного взаимодействия волны со стенкой имеет величину только порядка 1 мм. В центре резонатора наблюдаются обычные акустические колебания, точно такие же, как если бы резонатора вообще бы не было. Соответственно рассеяние акустической энергии по причине трения о стенки происходит только в узком пограничном слое у стенки. Глубина термического проникновения Точно так же как и для вязкостного взаимодействия со стенкой, для термического взаимодействия тоже есть величина, которая характеризует величину слоя газа, активно термически взаимодействующего со стенкой. Эта величина называется – глубина термического проникновения δκ. Колебания температуры газа у стенки деформируются точно так же как и скорость газа в предыдущем примере. Так что если просто сказать, что теперь на гифке 5 происходят колебания не скорости газа, а температуры и что теперь вертикальная ось размечена не в глубинах вязкостного проникновения, а в глубинах термического, то гифка 5 будет верна и для колебаний температуры. Численно глубина термического проникновения всегда больше, чем глубина вязкостного. Например для того же воздуха при нормальных условиях и при частоте колебаний 70 Гц глубина термического проникновения составит примерно 0,32 мм, что всего лишь в 1,185 раза больше чем глубина вязкостного в предыдущем примере. Какие можно из всего этого сделать выводы? Ну во первых, при достаточно крупном диаметре резонатора, волна почти никак ни вязкостно, ни термически не взаимодействует с резонатором. Резонатор только задаёт направление волны и тип волны. Отсюда следует, что для того чтобы передавать и отнимать у газа тепловую энергию, величина каналов (пор, отверстий, щелей) в теплообменном аппарате должна быть где то в районе величины термического проникновения, но ни в коем случае не намного больше этой величины. Затем, так как глубины вязкостного и термического проникновения почти равны для любых газов и для любых частот, то термоакустические устройства обречены на то чтобы иметь потери связанные с трением газа о поверхность теплообменного аппарата. 3.3) Размеры каналов в теплообменном аппарате Уравнения термоакустики с другой стороны говорят нам о том, что в устройствах со стоячей волной величина гидравлического радиуса пор стека (аналога регенератора в устройствах с бегущей волной), должна быть примерно равна глубине термического проникновения в газе. То есть, в устройстве со стоячей волной, величина пор в стеке должна быть, где то в 3,5-6 раз больше, чем в устройстве с бегущей волной при прочих равных. Величина пор в теплообменниках устройств со стоячей волной не так сильно влияет на эффективность устройства, как величина пор в стеке, так же как и в устройствах с бегущей волной. 3.4) Длина теплообменников и регенератора
|
||||
Последнее изменение этой страницы: 2021-06-14; просмотров: 257; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.239.25 (0.007 с.) |