Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Так как же преобразовать энергию звука в электроэнергию.Содержание книги
Поиск на нашем сайте
У двигателя Стирлинга с выработкой электроэнергии всё понятно. Если есть коленчатый вал, то к нему можно прикрепить вращающийся электрогенератор. Если двигатель Стирлинга резонансный, то можно прикрепить магнит на рабочий поршень и поместить его в статор линейного генератора. Но что делать в случае термоакустического двигателя? Как получить электроэнергию в двигателе, где нет ни коленчатого вала, ни поршней? Как преобразовать акустическую энергию высокой интенсивности в электрическую? На сегодня были придуманы два способа, как это сделать. Первый способ – это использовать линейные преобразователи. Вот посмотрите видео на моём канале, где я экспериментирую с линейным преобразователем:
Обыкновенный динамик – это пример линейного преобразователя. Обычно при работе он преобразует электрическую энергию, которая поступает к нему на вход в звук, то есть в акустическую энергию. Но он вполне может работать и в обратном направлении и преобразовывать акустические колебания в электроэнергию. Обычные динамики не рассчитаны на крайне высокую интенсивность звука как в термоакустических устройствах (160 – 180 дБ.), поэтому имеют большие потери энергии, которые связаны с низкой добротностью колебательной системы, большим коэффициентом поглощения мембраной волны из-за её недостаточной жёсткости, а также недостаточная величина свободного хода мембраны не позволяет использовать всю доступную мощность. Поэтому делают специальные динамики – линейные альтернаторы, которые по принципу работы ничем не отличаются от динамика, но имеют либо адаптированную под высокую интенсивность звука мембрану, либо вообще мембрану заменяют поршнем.
КПД преобразования акустической энергии в электрическую энергию с помощью такого преобразователя может доходить до 80 %. Второй способ преобразования – это использовать турбогенератор с двунаправленной турбиной. Звуки, встречающиеся в повседневной жизни большинства людей, такие как речь, звуки проезжающих машин, лай собаки, имеют по меркам термоакустики небольшую интенсивность. Смещения газа из положения равновесия в акустической волне разговорной речи составляют доли миллиметра, так что никто не воспринимает обычно звуковую волну как ветер, который меняет своё направление тысячи раз в секунду, то есть меняет направление с частотой равной частоте колебаний волны. В термоакустике, когда интенсивность колебаний доходит до 180 Децибел, звук становиться уже даже не ветром, который с большой частотой меняет направление, а скорее ураганом с пиковой скоростью, доходящей до 100 км/ч. Поэтому можно использовать турбину для того чтобы преобразовать эту звуковую энергию в электричество. В этом видео я провёл интересные эксперименты на эту тему, чтобы наглядно показать то, как выглядит звуковая волна высокой интенсивности.
Сразу же понятно, что направление вращения ротора турбины для термоакустики не должно зависеть от направления потока входящего и выходящего из турбины, иначе половину периода колебания поток будет разгонять ротор, а вторую половину периода тормозить. Существует два типа двунаправленных турбин, направление вращения которых не зависит от направления потока. Это турбина Уэльса, лопатки ротора которой представляют собой аэродинамические профили расположенные поперёк набегающего потока.
Аэродинамический профиль отклоняет большую массу набегающего воздуха в одну и ту же сторону независимо от направления движения набегающего воздуха. Импульс воздуха всё время отклоняется, на рис. 9 вправо, значит, по законам Ньютона сила, действующая на лопатки, должна быть направлена в левую сторону. Законы Ньютона в данном случае работают исправно и если закрепить такие лопатки по периметру окружности, а окружность закрепить на вал, то вал начнёт вращаться.
Можно улучшить конструкцию и добавить направляющие лопатки, которые будут увеличивать эффект. Второй тип двунаправленных турбин – это так называемые импульсные турбины. В этом видео показано то, как работает такая турбина: Рис. 11.– Схема двунаправленной импульсной турбины Импульсная турбина работает более эффективно, чем турбина Уэльса из-за более совершенной формы лопаток ротора. Экспериментальная часть Для первых экспериментов по выработке электроэнергии на моём двигателе я выбрал самый простейший способ и при этом самый не эффективный – использование обыкновенного низкочастотного динамика.
Вот в этом видео я рассказываю о том, как я создавал и пытался настроить получившийся самодельный линейный альтернатор:
Я прикрепил динамик к резонатору двигателя через вот такой вот переходник, который распечатал на 3D принтере.
Прикрепил к резонатору со стороны холодного теплообменника, чтобы высокой температурой не расплавить пластиковый переходник и не повредить сам динамик. Ранее я измерил акустическую мощность двигателя. Мощность составила около 10 Вт. Естественно только часть этой мощности можно преобразовать в электроэнергию. Вспоминая рисунок 6 — распределение акустической мощности, в качестве линейного альтернатора я выбрал динамик YDN-78-1 максимальной мощностью в 2 раза меньше, чем акустическая мощность двигателя, а именно — 5 Вт. Самое сложное при использовании линейного альтернатора – это настроить систему, состоящую из динамика и переходника на резонансную частоту самого двигателя. Сложность в том, что частота колебаний двигателя различается при различных температурах нагрева горячих теплообменников, то есть при различных уровнях подводимой тепловой мощности. А всё потому, что чем больше тепловой мощности подведёшь, тем больше становиться средняя температура газа внутри и с увеличением температуры газа увеличивается скорость звука в газе, а соответственно и частота колебаний. При этом измерения проведённые фирмой Aster Thermoacoustics показывают, что выходная мощность линейного преобразователя сильно зависит от совпадения его резонансной частоты с резонансной частотой двигателя. Рис. 14. Зависимость относительной выходной мощности от резонансной частоты двигателя Эксперименты с моим двигателем показали, что увеличивая температуру горячих теплообменников с 120 градусов по Цельсию до 220 градусов, частота колебаний увеличивается с 61 Гц до 64 Гц, то есть изменяется на 3 Гц. На рис. 14 – на графике Aster Thermoacoustics по горизонтальной оси отмечена частота двигателя, а по вертикальной – выходная электрическая мощность линейного преобразователя, поделённая на максимальную мощность преобразователя во всём диапазоне частот (по этому максимальное значение на графике равно единице). На рис. 14 видно, что при отклонении резонансной частоты двигателя от резонансной частоты преобразователя на 5 Гц выходная мощность падает в 2 раза. Это означает то, что термоакустический генератор с линейным альтернатором может работать эффективно только при определенном уровне подводимой тепловой энергии. При отклонении от этой оптимальной точки выходные характеристики будут резко падать. Итак, резонансная частота моего двигателя 61 – 63 Гц. Динамиков с такой низкой резонансной частотой я не нашёл (возможно что их вообще не существует для такой маленькой мощности). Резонансная частота моего динамика изначально была 147 Гц. Как же я её измерил?
Я использовал схему из журнала «Радио» выпуск №4 1967г, 45 страница. Это схема автоколебательного электрического контура, в котором нет ни индуктивностей, ни ёмкостей поэтому, по задумке, частота колебаний такого контура определяется частотой колебаний механической колебательной системы – диафрагмы динамика. Затем я уменьшил частоту динамика до 61 Гц, налепив на диафрагму пластилин. Это увеличило массу диафрагмы и таким образом снизило частоту. После этого я вставил настроенный динамик в оранжевый переходник. каково же было моё удивление, когда вместо частоты колебаний 63 Гц я обнаружил частоту колебаний 187 Гц, то есть в три раза больше, чем ожидалось. Возбудилась 3-я гармоника. В корпус двигателя начало укладываться 3 длины волны, а не одна. На самом деле в двигателе всегда присутствуют не основные гармоники, просто обычно термоакустические устройства работают на первой гармонике, то есть на основной частоте, а вклад остальных гармоник пренебрежимо мал. Меня очень удивил эффект возбуждения 3-й гармоники в этом эксперименте с динамиком и я начал думать, как же так получилось. Я пришёл к выводу, что этот эффект возникает по причине того, что динамик встроен в резонатор двигателя через переходник и нужно рассматривать резонансную частоту не динамика отдельно, а динамика совместно с переходником. Переходник сильно увеличивает резонансную частоту всей связки. По этому, чтобы добиться работы на основной частоте в 63 Гц нужно ещё сильнее понизить резонансную частоту динамика.
И действительно это сработало, как и ожидалось. Удалось изменить режим работы двигателя на работу с основной частотой. Были даже очень интересные переходные процессы, когда при определённой массе, налепленной на диафрагму, двигатель то работал на основной частоте, то потом по мере остывания горячих теплообменников начинал работать на утроенной частоте. Интересно то, что на удвоенной частоте двигатель работать не может. Либо на основной, либо на утроенной. Видимо параметры волны при удвоенной частоте, не пригодны для поддержания работы этого устройства.
Для того, чтобы добиться уровней КПД в 20 — 40 % от цикла Карно необходимо увеличивать давление в двигателе, заменить рабочий газ на гелий либо аргон и использовать другие способы выработки электроэнергии, нежели обычный динамик. Теги:
Хабы:
|
||||
Последнее изменение этой страницы: 2021-06-14; просмотров: 96; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.86.53 (0.009 с.) |