Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Какие имеются проблемы у существующих на данный момент микро – тэц.↑ ⇐ ПредыдущаяСтр 12 из 12 Содержание книги
Поиск на нашем сайте
Основные проблемы существующих активно эксплуатируемых микро-ТЭЦ – это: · маленький интервал между техническим обслуживанием, низкая надёжность.
Дизельные и газотурбинные генераторы требуют обслуживания в лучшем случае раз в год. Это увеличивает стоимость выработки электроэнергии, создаёт лишнюю организационную работу владельцам такой установки, а во время проведения обслуживания установку естественно приходится останавливать на определённое время, что создаёт проблемы потребителям. — У дизельных и газотурбинных установок отсутствует возможность использовать все виды горючих топлив (жидкое, газообразное, твёрдое горючее), а также отсутствует возможность использовать альтернативные источники тепловой энергии (солнечная, геотермальная, бросовое тепло).
Далеко не у всех потребителей оптимальный источник тепловой энергии для микро-ТЭЦ – это дизельное топливо или природный газ. Бывает гораздо дешевле использовать другие источники тепловой энергии. Например на предприятии, на котором тепловая энергия сбрасывается в атмосферу, можно спасать часть этой энергии, вырабатывая с её помощью электроэнергию на микро-ТЭЦ. Либо в районах с геотермальными источниками (например, Камчатский край) использовать тепловую энергию недр земли. В районах с высокой солнечной активностью можно использовать для нагрева солнечную энергию или совместно солнечную энергию и энергию сжигаемого горючего топлива. Таким образом, использование дизельными и газотурбинными генераторами только горючих топлив, является их явным недостатком. — Высокая начальная цена микро-ТЭЦ. Из-за высокой цены многие люди отказываются от приобретения установки, так как хоть использование установки и становиться через несколько лет дешевле, чем подключение к электросети, но осилить сразу же цену микро-ТЭЦ люди не в состоянии. Решение проблем Первые две выше обозначенные проблемы с низким интервалом между тех. обслуживанием и всеядностью решают установки, построенные на основе двигателей Стирлинга.
Ещё одно решение первых двух проблем, это установки на основе паровых микротурбин, то есть установки, работающие по циклу Ренкина. Как пример такой установки, разработанный в России, можно привести микроэнергетический комплекс на базе влажно-паровой микротурбины, созданный научно-производственным предприятием «Донские технологии»
Не смотря на все преимущества данных установок по сравнению с установками на двигателях внутреннего сгорания и газотурбинных двигателях, они пока не обрели большой популярности из-за более высокой начальной стоимости, сложности ремонта или внепланового обслуживания (отсутствия квалифицированных работников, способных произвести внеплановый ремонт) и по причине долгого привыкания людей к новой технологии. Термоакустический генератор Так же как установки на двигателе Стирлинга и на паротурбинном цикле решают проблемы с низким интервалом между тех. обслуживанием и отсутствием всеядности при выборе топлива, термоакустический генератор аналогично решает эти проблемы. Соответственно, для того чтобы занять место на рынке, термоакустическому генератору необходимо иметь начальную стоимость ниже, чем у данных установок, а желательно и ниже чем у дизельных и газотурбинных. Рассмотрим, за счёт чего в термоакустическом генераторе решаются проблемы с тех. обслуживанием и всеядностью, и можно ли решить проблему с высокой начальной ценой. Напомню, для тех, кто не читал предыдущие статьи «1 статья»,«2 статья», что разрабатываемый мной термоакустический двигатель схематично выглядит примерно так: Рис. 18. Схема четырёхступенчатого двигателя с бегущей волной Система, состоящая из резонатора и теплообменников, генерирует под воздействием тепловой энергии энергию акустическую. То есть при наличии определённой разности температур между теплообменниками, в резонаторе возникает бегущая акустическая волна. У термоакустического двигателя в таком виде крайне высокий ресурс, так как он не содержит никаких движущихся частей. Но для выработки электроэнергии нужны дополнительно турбогенераторы, которые должны преобразовывать акустическую энергию сначала в механическую энергию вращения ротора турбогенераторов, а затем и в электроэнергию. Таким образом, ожидается, что максимальный интервал между тех. обслуживанием в этой части будет ограничен необходимостью обслуживать турбогенераторы и в последнюю очередь сам двигатель. То есть получается с одной стороны всё как у паротурбинной установки. Однако турбогенератор в термоакустическом двигателе работает при гораздо меньших температурах (около 40 градусов по Цельсию), чем в паротурбинном цикле, где температура турбины достигает более 200 градусов. При этом в термоакустическом двигателе турбина находится в среде инертного газа – гелия, либо аргона, в отличие от паровой турбины, которая изнашивается под ударами капель, содержащихся в паре. Таким образом, можно ожидать повышение ресурса турбогенератора в термоакустическом двигателе по сравнению с паровым турбогенератором. Термоакустический двигатель может использовать почти любой источник тепловой энергии, так как является двигателем с внешним подводом тепла, так же как и двигатель Стирлинга. При этом имеет очень низкую разность температур между горячим и холодным теплообменниками, необходимую для старта двигателя (самое низкое значение разности температур, встречавшееся мне в литературе, составляет 17 градусов). Поэтому очевидно, что данный двигатель решает проблему с использованием различных видов тепловой энергии. Посмотрим, за счёт чего термоакустический генератор может быть дешевле, чем генератор на двигателе Стирлинга и чем паротурбинный. · Во первых благодаря использованию стандартных труб в качестве корпуса резонатора. В отличие от двигателя Стирлинга, корпус термоакустического двигателя не должен иметь высокую точность изготовления. Сгодятся обычные стальные трубы без токарной обработки. · Затем, по сравнению со свободнопоршневым двигателем Стирлинга, термоакустический генератор имеет не линейный, а вращающийся генератор, что уменьшает его материалоёмкость, а, следовательно, и стоимость. · Ну и наконец, турбогенератор, так как работает практически при комнатной температуре, то может использовать в своём составе детали из пластика, что снижает стоимость его изготовления.
Теги:
Хабы:
|
||||
Последнее изменение этой страницы: 2021-06-14; просмотров: 86; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.186.153 (0.005 с.) |