Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Термодинамический цикл в устройствах со стоячей волной и в устройствах с бегущейСодержание книги
Поиск на нашем сайте
4.1) Двигатель и холодильник со стоячей волной Двигатель
Гифка 6. Термодинамический цикл в двигателе со стоячей волной На гифке 6. показаны колебания элементарного объёма газа между пластинами стека. Газ, совершая сжатия и расширения, изменяет свою температуру (график в левом нижнем углу). График зависимости температуры от координаты представляет собой фигуру похожую на овал (зелёная линия). Белой линией на графике отмечена температура поверхности стека. Можно видеть, что присутствует температурный градиент вдоль длины стека. То есть температура линейно снижается при движении от левого до правого конца стека. Если белая линия температуры стека имеет наклон на графике больше, чем наклон овала — графика температуры газа, то устройство работает как двигатель. В середине справа показана PV диаграмма – зависимость давления от объёма в элементарной порции газа. Площадь овала на диаграмме численно равна работе совершаемой над газом в случае двигателя и работе совершаемой газом в случае холодильника (теплового насоса). Так как при работе со стоячей волной оптимальная величина размеров каналов стека примерно равна глубине термического проникновения, то термический контакт газа и твёрдой поверхности не идеален и температуры газа и стека, в какой либо конкретной точке стека могут отличаться друг от друга. Если бы тепловой контакт между газом и стеком был бы идеален, то тогда графики температуры газа и стека совпадали, так как газ бы мгновенно принимал температуру поверхности стека, в какой бы точке он ни оказался. Критический градиент температуры в стеке
Гифка 7. Критический градиент температуры в стеке Теперь возьмём двигатель и начнём уменьшать перепад температур на стеке, при этом, каким либо образом сохраняя амплитуду акустической волны, например с помощью динамика. При этом рано ли поздно, наступает состояние, при котором температура в элементарной порции газа в волне начинает колебаться так, что её температура начинает совпадать с температурой поверхности стека, где бы эта порция газа не находилась (гифка 7. зелёная и белая линии на графике температуры совпадают). В таком случае, не совершается никакой работы в стеке (PV диаграмма представляет собой линию – фигуру, не имеющую площади) Градиент температур в стеке, при котором реализуется описанный выше случай, называется критическим градиентом температур для данной конкретной волны. Устройство, с критическим градиентом температур абсолютно бесполезно для практического применения. Оно занимает положение ровно между двигателем и холодильником. Тем не менее, относительно него удобно сравнивать устройства, чтобы выяснить двигатель это или холодильник. Холодильник
Гифка 8. Термодинамический цикл в холодильнике со стоячей волной Если у температуры стека наклон меньше, чем у овала температуры газа, то устройство работает как холодильник. Обратите внимание, что вращения зелёной точки на диаграммах двигателя и холодильника идут в противоположных направлениях, что говорит о том, что в одном случае производиться работа над газом, а в другом газ производит работу. Что нужно сделать, чтобы превратить холодильник в двигатель? Нужно либо увеличить температурный градиент в стеке, при сохранении амплитуды акустической волны, либо уменьшить амплитуду волны при сохранении температурного градиента. 4.2) Двигатель и холодильник с бегущей волной В устройствах с бегущей волной реализуется случай идеального термического контакта между газом и поверхностью регенератора, благодаря маленькому оптимальному размеру пор.
Гифка 9. Термодинамический цикл в двигателе с бегущей волной Здесь температура газа (зелёная линия на графике температуры) совпадает с температурой регенератора во всех его точках (белая линия на графике температуры). PV диаграмма в правом нижнем углу говорит о том, что производиться работа над газом. При этом нужно понимать, что хоть графики температур газа и регенератора совпадают, но это не устройство с критическим градиентом температуры в понимании описанном ранее. В устройствах со стоячей волной нужно было подобрать необходимый температурный градиент для данной волны, чтобы он совпал с колебаниями температуры в акустической волне. В устройствах же с бегущей волной из-за того что поры в регенераторе очень маленькие, всегда обеспечивается хороший термический контакт между регенератором и газом. Поэтому критический градиент температуры в устройствах с бегущей волной существует всегда и этот термин здесь теряет какой либо смысл. Как же тогда производиться работа над газом? Ведь при критическом градиенте температур, в случае устройства со стоячей волной, никакой работы не было. Всё дело в том, что при критическом градиенте температур не производиться работы над газом именно в стоячей волне, а в бегущей волне другая разность фаз между колебаниями давления и скорости газа и работа в данном случае наоборот, максимальна. Для холодильника с бегущей волной графики будут выглядеть точно так же как и на гифке 9, за исключением того, что зелёная точка на PV диаграмме будет вращаться в другую сторону, что будет свидетельствовать о том, что газ совершает работу, а не над газом совершается работа. В заключение, всем кто хочет по подробнее узнать о термоакустике, хочу порекомендовать книгу Г. Свифта, который внёс огромный вклад в термоакустику, работая в Лос-Аламосской национальной лаборатории: Swift G.W. Thermoacoustic engines and refrigerators: a short course. Los Alamos: Los Alamos National Laboratory, 1999. 179 p. URL: ссылка для скачивания Так же, прикрепляю анимации термоакустических процессов, созданные командой Г. Свифта: В этой статье я пересказал только небольшую часть того что есть в этой книге, при этом не используя математику. В оригинале всё гораздо интереснее. Теги:
Хабы:
|
||||
Последнее изменение этой страницы: 2021-06-14; просмотров: 146; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.172.189 (0.008 с.) |