Программное управление биохимическими превращениями. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Программное управление биохимическими превращениями.



Программное обеспечение частиц вещества разработано под «правила игры» физического мира, в котором вещество участвует в физических взаимодействиях согласно физическим законам. Эти законы имеют универсальный характер, они одинаково охватывают своим действием как вещество «неживой» природы, так и вещество в одушевлённых организмах. Кроме того, атомы в одушевлённых организмах – это точно такие же атомы, как и в «неживой» природе. Поэтому из научной доктрины о самодостаточности физического мира с неизбежностью следует, что не должно быть качественных различий в поведении вещества в «неживой» природе и в одушевлённых организмах. В реальности же, эти различия не просто имеют место; они – колоссальны.

Начать с того, что, с позиций доктрины о самодостаточности физического мира, загадкой является само существование сложных биомолекул – см., например, [А1]. Мы добавляем, что, хотя структурные формулы сложных биомолекул показывают, что каждый атом в них имеет количество химических связей, равное количеству его валентных электронов, это отнюдь не означает, что такая молекула может беспроблемно образоваться. Дело в том, что в каждой химической связи (8.3) задействован квант теплового возбуждения, а, в условиях теплового равновесия, каждый свободный атом имеет только один квант теплового возбуждения – сколько бы валентных электронов он ни имел (8.4). Поэтому проблематично самопроизвольное образование стабильных молекул, в которых число химических связей заметно превышает число задействованных атомов. Чем больше в молекуле процент атомов с количествами валентных электронов, равными 3,4,5 – тем больше дефицит обеспеченности тепловыми квантами её химических связей (8.4). Между тем, одушевлённые организмы кишат биомолекулами, синтезированными с названным дефицитом – начиная с ДНК, РНК, гормонов, и заканчивая АТФ, ферментами и витаминами. На первый взгляд, этот дефицит невелик – отношение количества химических связей в сложной биомолекуле редко превышает число атомов более чем в 1.2 раза – но в «неживой» природе, в условиях теплового равновесия, даже такая молекула может образоваться только в порядке совершенно невероятного исключения.

Что же касается белков, то лишь некоторые входящие в их состав аминокислоты имеют дефицит обеспеченности тепловыми квантами, но хорошо известна другая проблема: молекулы аминокислот, предоставленные самим себе, отнюдь не соединяются в белковые цепочки, потому что с большей вероятностью сцепляются вовсе не теми радикалами, которые дают пептидные связи (которые, к тому же, в живых белках не стационарны, а представляют собой последовательные смены двух конфигураций на характерных частотах [Н2]). Как можно видеть, практически, все биомолекулы, задействованные в живых организмах, ни при каких обстоятельствах не могли сформироваться самопроизвольно, поэтому теории о самозарождении жизни на Земле в результате счастливой физико-химической игры – выглядят попросту смехотворно.

Но, с позиций физико-химической игры, загадкой является не только само существование биомолекул. Никакими физико-химическими законами не объяснить то феерическое действо, которое биомолекулы вытворяют в живых организмах – через биохимические превращения. Дело в том, что эти биохимические превращения происходят с вопиющим выходом за рамки физико-химических законов, которые действуют в «неживой» природе. Действительно, в «неживой» природе химические реакции идут в сторону энергетической выгодности и – если ситуация позволяет – до установления химического равновесия. В одушевлённом же организме (здоровом) осуществляются не те биохимические превращения, которые энергетически выгодны, а те, которые требуются организму на текущий момент – достижение же здесь химического равновесия означало бы прекращение биохимических процессов. Но мало того, что биохимические превращения зачастую идут в «неправильном», энергозатратном направлении – они идут ещё и с запредельно высокими скоростями, которые далеко не укладываются в самые смелые допущения химической кинетики. Наука, вынужденная хоть что-то сказать по этому поводу, ухватилась за тезис о том, что запредельно высокие скорости биохимических превращений обеспечиваются благодаря биокатализаторам – ферментам. Но апелляция к ферментам даёт не решение проблем со скоростями биохимических превращений, а, наоборот, ещё большее нагромождение этих проблем [Н3]. Каждый фермент имеет очень узкую специализацию, и для синтеза сложной биомолекулы требовалось бы множество ферментов – причём, они должны были бы приближаться к строящейся биомолекуле и выполнять свою работу в строго определённой последовательности. Каким образом упорядочивается такое строительство – об этом наука до сих пор помалкивает. Кроме того, ведь сами ферменты тоже нужно синтезировать! Для этого, по научной логике, потребовались бы другие ферменты, и т.д. – результирующие соотношения между биомассами ферментов и «конечных продуктов» были бы нереально огромны. Автор [Н3] пишет, что ферменты – например, пищеварительные – требуются для воздействия на «чужие» биомолекулы, «свои» же биомолекулы и без помощи ферментов синтезируются и перестраиваются с колоссальной эффективностью. Потому что «свои» биомолекулы, помимо действия физико-химических законов, охвачены дополнительным программным управлением, которое и обеспечивает «невозможные» биохимические превращения.

«То, как это происходит в случае больших молекул белков, видно даже в сильный световой микроскоп. После формирования первичной структуры молекулы, т.е. правильной цепочки аминокислот, эта цепочка – без помощи ферментов! – сворачивается, скрепляясь слабыми связями и формируя свою вторичную структуру, а затем изгибается в конфигурацию третичной структуры. Заметим, что свернуться и изогнуться она может миллиардами способов, но реализуется один способ – который даёт именно ту конфигурацию, которая требуется для решения неотложной задачи. А после того, как молекула успешно поработала и выполнила своё предназначение, она сразу распадается – входившие в её состав аминокислоты пригодятся для новых молекул и новых задач!

Подобное поведение биомолекул производило на иных биохимиков такое сильное впечатление, что они всерьёз уверяли, будто эти биомолекулы имеют свой собственный разум – иначе, мол, происходящее не объяснить. Но ведь то, что вытворяют биомолекулы в разных частях организма, оказывается дивным образом скоординировано – и от эффективности этой координации зависит, будет ли организм жизнеспособен дальше. Неужели биомолекулы, своими молекулярными разумами, отслеживают потребности организма в целом? Не проще ли допустить, что у организма имеется центральное программное управление, которое, обеспечивая поддержание его жизненных функций, автоматически ставит локальные задачи, которые биомолекулы автоматически же и решают?» [Э1]

Это дополнительное управление вполне может проявляться через управляемые перестроения структур химических связей. В одушевлённых организмах, через эту целенаправленную перестройку химических связей могут не только осуществляться заранее запланированные биохимические процессы, но и неотложно решаться внезапно возникающие адаптационные задачи – например, подбор антител к новому антигену. Для этого требуется целенаправленным образом эффективно разваливать одни химические связи и создавать другие.

Как это можно делать? Чтобы быстро ликвидировать химическую связь, достаточно переключить в категорию «невалентных» хотя бы одну из задействованных в ней атомарных связок «протон-электрон» (8.3). А чтобы быстро замкнулась химическая связь, требуется, чтобы две приготовленные для неё валентные связки «протон-электрон» оказались на небольшом, сопоставимом с размерами атома, расстоянии друг от друга, с которого они быстро самостоятельно сблизятся до «расстояния включения химической связи» - благодаря, как это ни парадоксально, взаимному кулоновскому притяжению (8.9). То есть, запредельно эффективное и целенаправленное изменение структур «своих» биомолекул – чем и обеспечивается поддержание организма в жизнеспособном состоянии – вполне может быть реализовано с помощью искусных переключений валентных конфигураций у задействованных атомов. Само собой, что и биомолекулы специально спроектированы так, чтобы, в результате той или иной последовательности переключений валентных конфигураций у задействованных атомов, структура биомолекулы изменялась соответствующим целенаправленным образом.

 

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 65; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.184.214 (0.006 с.)