Как Эддингтон изображал искривление лучей света тяготением Солнца.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Как Эддингтон изображал искривление лучей света тяготением Солнца.



Традиционные представления о свете, как о летящих фотонах, подразумевают, что фотоны являются полноценными частицами, которые подвержены действию тяготения. Т.е., фотон, пролетающий вблизи массивного тела, должен искривлять свою траекторию из-за гравитационного притяжения к «силовому центру». Эйнштейн утверждал, что, помимо этого гравитационного притяжения, существует ещё один механизм, дополнительно искривляющий траекторию пролетающего фотона (см., например, [Э1]). Согласно общей теории относительности (ОТО), по мере приближения к «гравитирующему телу», замедляется темп течения времени, и, соответственно, уменьшается скорость света. А известно, что градиент скорости света вызывает рефракцию, т.е. искривление траектории света в ту сторону, где его скорость меньше. Предсказанная величина поворота траектории фотона из-за этой «гравитационной рефракции» оказалась такая же, как и из-за чисто гравитационного притяжения фотона, т.е. теория Эйнштейна предсказывала удвоенное искривление луча, по сравнению с классическими предсказаниями. Если на опыте обнаружился бы удвоенный эффект – это подтвердило бы общую теорию относительности.

И нас уверяют, что астрономам удалось обнаружить искривления лучей света от звёзд, проходившего вблизи Солнца – в согласии с предсказаниями ОТО! Оказалось, что эти уверения гроша ломаного не стоят. Астрономы, действительно, развернули бурную деятельность – но при этом они упорно выдавали желаемое за действительное.

Особенно на этом поприще отличился Эддингтон в 1919 г. Идея опыта заключалась в том, чтобы сфотографировать участок звёздного неба в окрестностях Солнца и сравнить его с опорной фотографией – того же участка, но в отсутствие Солнца. Искомый эффект заключался бы в соответствующих радиальных смещениях изображений звёзд – от Солнца. Но чтобы звёзды в окрестностях Солнца были заметны, съёмку следовало проводить в условиях полного солнечного затмения – ради чего и была организована астрономическая экспедиция.

Вся эта затея была изначально бессмысленна по совсем простой причине – узнавая о которой, сегодняшние релятивисты впадают в ступор. Дело в том, что, при съёмках неба в окрестностях Солнца, свет от звёзд проходил сквозь солнечную корону – неоднородную нестационарную среду – и испытывал при этом непредсказуемую рефракцию на неоднородностях плотности вещества, отчего изображения звёзд на фотопластинке могли смещаться на произвольные величины в произвольных направлениях. Совершенно ясно: ловить было нечего. Но даже если бы Эддингтону сказочно повезло, и, на время его наблюдений, вместо неспокойной плазмы солнечной короны имел бы место межпланетный вакуум, то и тогда его фотографии ровным счётом ничего не доказали бы – ввиду катастрофически недостаточной точности измерений.

Действительно, в замечательной статье [И1], написанной специалистом по практической астрономии, дан анализ погрешностей в эксперименте Эддингтона. По Эйнштейну, ожидаемая величина отклонения луча составляла 1.7 угловых секунды при пролёте света впритирку с краем Солнца. При пролёте на двух солнечных радиусах – ожидаемый эффект в два раза меньше, на трёх радиусах – в три раза меньше, и т.д. Из-за засветки прилегавшей к Солнцу области, реально наблюдались звёзды, находившиеся на небесной сфере на удалениях от 2 до 8 радиусов Солнца от его центра, при этом ожидаемый эффект составлял от 0.8 до 0.2 угловых секунд. По классическим представлениям, эффект был бы ещё в два раза меньше. «Основной целью экспедиции было опровергнуть теорию Ньютона и подтвердить теорию Эйнштейна. Следовательно, в данном эксперименте точность измерения должна была быть менее 0.1", что даже сейчас является фактически недостижимой задачей для наземных астрометрических измерений» [И1].

В самом деле, на выездной астрономической экспедиции мог использоваться только широкоугольный телескоп, с малым диаметром зеркала, а, значит, и с малым угловым разрешением. «Теоретическое значение кружка рассеяния для 300 мм телескопа равно 0.8"», а в реальности, из-за недостатков оптической системы, «угловой диаметр пятна рассеяния должен был составлять не менее 2 - 2.5", что в 3 раза превышало максимальную измеряемую величину» [И1]. Неидеальность гидирующего механизма должна была дать дополнительное размывание кружка рассеяния – минимально, на несколько десятых угловой секунды. Впечатляет и погрешность из-за зернистости фотопластинок. При поле зрения телескопа 4х4 градуса и стандартном размере пластинки, 18х24 см, «1 угловая секунда соответствовала 13 микронам на пластинке» [И1]. В 1919 г. «реальный размер зерна был порядка 20 - 30 микрон, а полученные "изображения" звезд представляли собой одно или два засвеченных зерна» [И1]. При этом ошибка определения положения звезды составляла, как минимум, одну угловую секунду. В довершение ко всему этому, Эддингтон наделал ещё и методологических ошибок, самой непростительной из которых считают вот какую. «Опорная фотопластинка была снята в январе в Англии (угол эклиптики над горизонтом - 20 град.), а затмение снималось на экваторе в 13:30, т.е. Солнце было в зените» [И1]. Атмосферная рефракция для этих двух случаев сильно различается, а точно учесть эти различия на фотопластинках было весьма проблематично – «в любом случае, остается ошибка не менее десятых долей секунды» [И1]. Сказанного с запасом достаточно, чтобы сделать логичный вывод: «В данном эксперименте измеряемая величина находилась глубоко под ошибками измерения… вывод о правильности ОТО, основанный на результатах этой экспедиции, является неправомерным и принципиально некорректным» [И1]. В условиях, когда инструментальные и методологические погрешности превышали искомый эффект, как минимум, в разы, Эддингтон пустился на хитрость: он отбраковал подавляющее большинство фотопластинок, расценив их как «неудачные». Методику этой отбраковки он не огласил – но едва ли можно сомневаться в том, что руководящим критерием было согласие с предсказаниями Эйнштейна: следовало учитывать только «правильные» смещения звёзд и не учитывать «неправильные». С помощью такой прогрессивной методики – т.е., через устранение из массива данных всего «лишнего» – можно «доказать» что угодно!

Вот почему, дорогой читатель, подробности эксперимента Эддингтона вы не найдёте в свободном доступе. Не странно ли это: скрывать от научной общественности детали того, как происходило «триумфальное подтверждение теории Эйнштейна»? Да нет: те, кто это скрывают – знают, что делают. Ибо не было там вообще никакого подтверждения – а не то что «триумфального».

Нам скажут, что были ведь другие экспедиции, повторившие результат Эддингтона! Вот именно – повторившие. Тропка была уже протоптана! Использовалось похожее оборудование и аналогичная методика обработки результатов – «они принципиально не обеспечивают суб-секундных точностей» [И1]. И это, напоминаем – без учёта хаотической рефракции света в солнечной короне! А ведь она, несомненно, имела место. «На фотографиях был получен набор хаотически смещенных во всех направлениях… "изображений звезд". Все это напоминало психиатрический тест - "пятна Роршаха", в которых, при желании, можно увидеть все что угодно» [И1].

Таким образом, ни Эддингтон, ни его последователи отнюдь не доказали, что свет испытывает, во-первых, действие тяготения, а, во-вторых, «гравитационную рефракцию» - обусловленную, якобы, зависимостью скорости света от гравитационного потенциала.

Уместно добавить, что ситуация совершенно аналогична и для случая радиоволн. Поэтому экспериментальные подтверждения действия тяготения на радиоволны и наличия гравитационного «притормаживания» радиоволн, проходящих вблизи массивного тела, получали по тем же принципам, как и в случае со светом – т.е. через заведомый обман. Так, для радиоимпульса, пролетающего рядом с Солнцем, гравитационное притормаживание дало бы увеличение времени его полёта, эквивалентное увеличению пути на 60 км! Шапиро утверждал, что именно это он и обнаружил при радиолокации Венеры, когда она была вблизи противостояния с Землёй. Об этом он заявил в статье с одиозным названием «Четвёртое подтверждение ОТО» [Ш4], но не привёл никаких экспериментальных данных – призывая верить ему на слово. С тех пор, в среде физиков, словосочетание «эффект Шапиро» имеет двойной смысл. Во-первых, это притормаживание радиоимпульсов при пролёте вблизи массивного тела. Во-вторых, это эффект, который «обнаружен» только на словах – без подтверждающих его экспериментальных фактов. Но этого позора оказалось мало. Спустя три года после своего «подтверждения ОТО», Шапиро предложил использовать радиоинтерферометры – пары радиотелескопов, разнесённых на межконтинентальные расстояния – для обнаружения гравитационного искривления траектории радиоимпульсов вблизи Солнца, принимая радиоимпульсы от квазаров [Ш5]. Надо иметь в виду, что, при работе радиоинтерферометра, информация о направлении на радиоисточник извлекается как раз из разности моментов прихода радиоимпульса на тот и другой радиотелескоп. А эта разность, в данном случае, сильно подвержена «эффекту Шапиро» – причём, в обоих его смыслах. Как же при этом удавалось подтверждать предсказания ОТО насчёт гравитационного искривления траектории радиоимпульса (см., например, [Л6])? На счастье экспериментаторов, опять же, имела место хаотическая рефракция радиоизлучения на неоднородностях плотности вещества в солнечной короне. Учесть эту рефракцию было невозможно, поэтому экспериментаторы помалкивали о ней в своих статьях. Зато статистика результирующих искривлений траекторий радиоимпульсов набиралась богатейшая – и из массива данных следовало отобрать лишь те случаи, которые «подтверждали ОТО». Всё тайное станет явным!

 

 



Последнее изменение этой страницы: 2021-04-04; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 35.172.223.30 (0.005 с.)