Достоинства и недостатки шпоночных соединений 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Достоинства и недостатки шпоночных соединений



Содержание

Соединения деталей машин

Шпоночные соединения

Достоинства и недостатки шпоночных соединений

Классификация шпоночных соединений

Материал шпонок

Рекомендации по конструированию шпоночных соединений

Расчет на прочность соединений с призматическими шпонками

Расчет на прочность соединений с сегментными шпонками

Расчет на прочность соединений с врезными клиновыми шпонками

Последовательность проверочного расчета шпоночных соединений

Шлицевые (зубчатые) соединения

Классификация шлицевых соединений

Достоинства и недостатки шлицевых соединений

Рекомендации по конструированию шлицевых соединений

Изображение шлицевых валов, отверстий и их соединений

Расчет на прочность прямобочных шлицевых соединений

Последовательность проверочного расчета шлицевых соединений

Клиновые соединения

Достоинства и недостатки клиновых соединений

Расчет на прочность клиновых соединений

Штифтовые и профильные соединения

Достоинства и недостатки штифтовых соединений

Клеммовые соединения

Расчет на прочность клеммовых соединений

Вопросы для самопроверки

 

Соединения деталей машин

Каждая машина состоит из деталей, число которых зависит от сложности и размеров машины. Так автомобиль содержит около 16 000 деталей (включая двигатель), крупный карусельный станок имеет более 20 000 деталей и т.д.

Чтобы выполнять свои функции в машине детали соединяются между собой определенным образом, образуя подвижные и неподвижные связи. Например, соединение коленчатого вала двигателя с шатуном, поршня с гильзой цилиндра (подвижные связи). Соединение штока гидроцилиндра с поршнем, крышки разъемного подшипника с корпусом (неподвижные связи).

Наличие подвижных связей в машине обусловлено ее кинематической схемой. Неподвижные связи обусловлены целесообразностью расчленения машины на узлы и детали для того, чтобы упростить производство, облегчить сборку, ремонт, транспортировку и т. п.

Соединение деталей – конструктивное обеспечение их контакта с целью кинематического и силового взаимодействия либо для образования из них частей (деталей, сборочных единиц) механизмов, машин и приборов.

С точки зрения общности расчетов все соединения делят на две большие группы: неразъемные и разъемные соединения.

Неразъемными называют соединения, которые невозможно разобрать без разрушения или повреждения деталей. К ним относятся заклепочные, сварные, клеевые соединения, а также соединения с гарантированным натягом. Неразъемные соединения осуществляются силами молекулярного сцепления (сварка, пайка, склеивание) или механическими средствами (клепка, вальцевание, прессование).

Разъемными называют соединения, которые можно многократно собирать и разбирать без повреждения деталей. К разъемным относятся резьбовые, шпоночные и шлицевые соединения, штифтовые и клиновые соединения.

По форме сопрягаемых поверхностей соединения делят на плоское, цилиндрическое, коническое, сферическое, винтовое и т.д.

Проектирование соединений является очень ответственной задачей, поскольку большинство разрушений в машинах происходит именно в местах соединений. Многие аварии и прочие неполадки в работе машин и сооружений обусловлены неудовлетворительным качеством соединений.

Так, например, опытом эксплуатации отечественных и зарубежных самолетов установлено, что долговечность фюзеляжа определяется прежде всего усталостными разрушениями, из которых до 85% приходится на резьбовые и заклепочные соединения. Отметим, также, что в конструкциях тяжелых широкофюзеляжных самолетов (например, ИЛ-96, АН-124) насчитывается до 700 тыс. болтов и до 1,5 млн заклепок.

К соединениям в зависимости от их назначения предъявляются требования прочности, плотности (герметичности) и жесткости.

Основным критерием работоспособности и расчета соединений является прочность. Необходимо стремиться к тому, чтобы соединение было равнопрочным с соединяемыми элементами. Наличие соединения, которое обладает прочностью, составляющей, например, 0,8 от прочности самих деталей, свидетельствует о том, что 20% нагрузочной способности этих деталей или соответствующая часть металла конструкции не используется.

При оценке прочности соединения стремятся приблизить его прочность к прочности соединяемых элементов, т.е. стремятся обеспечить равнопрочность конструкции.

Требование плотности является основным для сосудов и аппаратов, работающих под давлением. Уплотнение разъемного соединения достигается за счет:

1) сильного сжатия достаточно качественно обработанных поверхностей;

2) введения прокладок из легко деформируемого материала.

При этом рабочее удельное давление q в плоскости стыка должно лежать в пределах q = (1,5…4) p, p – внутренне давление жидкости в сосуде.

Экспериментальные исследования показали, что жесткость соединения во много раз меньше жесткости соединяемых элементов, а поскольку жесткость системы всегда меньше жесткости наименее жесткого элемента, то именно жесткость соединения определяет жесткость системы.

Желательно, чтобы соединение не искажало форму изделия, не вносило дополнительных элементов в его конструкцию и т. п. Например, соединение труб болтами требует образования фланцев, сверления отверстий под винты, установку самих винтов с гайками и шайбами. Соединение труб сваркой встык не требует никаких дополнительных элементов. Оно в наибольшей степени приближает составное изделие к целому. С этих позиций соединение болтами может быть оправдано только разъемностью.

Выбор типа соединения определяет инженер.

Шпоночные соединения

Шпоночные и шлицевые соединения служат для закрепления на валу (или оси) вращающихся деталей (зубчатых колес, шкивов, муфт и т. п.), а также для передачи вращающего момента от вала 1 к ступице детали 2 или, наоборот, от ступицы к валу (рис. 1и 2).

Шпоночное соединение образуют вал, шпонка и ступица колеса (шкива, звездочки и др.). Шпонка представляет собой стальной брус, устанавливаемый в пазы вала и ступицы. Она служит для передачи вращающего момента между валом и ступицей. Иногда шпоночное соединение применяется для предотвращения относительного сдвига соединяемых плоских деталей, например, при защите стягивающих болтов от воздействия перерезывающей нагрузки. Основные типы шпонок стандартизованы. Шпоночные пазы на валах получают фрезерованием дисковым или концевыми фрезами, в ступицах протягиванием.

Рис. 4. Соединение призматическими шпонками

 

Рис. 5. Соединение сегментной шпонкой: 1 - винт установочный; 2 – кольцо замковое пружинное

Рис. 6. Соединение сег­ ментной шпонкой

Рис. 7. Соединение клиновой шпонкой

- цилиндрические используют для закрепления деталей на конце вала. Отверстие под шпонку сверлят и обрабатывают разверткой после посадки ступицы на вал. При больших нагрузках ставят две или три цилиндрические шпонки, располагая их под углом 180° или 120°. Цилиндрическую шпонку устанавливают в отверстие с натягом. В некоторых случаях шпонке придают коническую форму. Круглые цилиндрические или конические шпонки не стандартизованы. Их используют в том случае, если втулку необходимо установить на конец вала. При диаметре вала D диаметр шпонки d =(0,16-0,17) D, длина l =(3-4) d. Отверстия под эти шпонки получают при сборке с обеспечением в сопряжении посадки с натягом Н 7/ r 6. Центр отверстия должен быть смещен в сторону центра вала (оси) на расстояние е =0,5[ D -(D 2- d 2)0,5].

Гнездо под установку цилиндрической шпонки засверливают и развёртывают в соединяемых деталях совместно. Такая технология изготовления соединения требует, чтобы материалы вала и ступицы не сильно отличались по показателям прочности и твёрдости, с одной стороны, а с другой неудобна к применению в массовом производстве, поскольку не обеспечивает условий взаимозаменяемости. По этой причине в массовом производстве цилиндрические шпонки почти не применяются.

- клиновые шпонки без головки (рис. 3, е, ж ирис. 7)и с го­ловкой (рис. 3, з); Усло­вия работы этих шпонок одинаковы. Клиновые шпонки имеют форму односкосных самотормозящих клиньев с уклоном 1:100. Такой же уклон имеют и пазы в ступицах. Головка служит для выбивания шпонки из паза. По нормам безопасности выступающая головка должна иметь ограждение (1 на рис. 7). В этих соединениях ступицу устанавливают на валу с небольшим зазором. Клиновую шпонку забивают в пазы вала и ступицы, в результате на рабочих широких гранях шпонки создаются силы трения, которые могут передавать не только вращающий момент, но и осевую силу. Эти шпонки не требуют стопорения ступицы от продольного перемещения вдоль вала. При забивании клиновой шпонки в соединении возникают распорные радиальные усилия, которые нарушают центрирование детали на валу, вызывая биение. Клиновые шпонки работают широкими гранями. По боковым граням имеется зазор. Соединения клиновыми шпонками применяют в тихоходных передачах. Они хорошо воспринимают ударные и знакопеременные нагрузки. Клиновая форма шпонки может вызвать перекос детали, при котором ее торцевая плоскость не будет перпендикулярна к оси вала, а также затруднена разборка при ремонте. Эти недостатки послужили причиной того, что применение клиновых шпонок резко сократилось в условиях современного машиностроения.

- тангенциальные шпонки (рис.8). Тангенциальная шпонка состоит из двух односкосных клиньев с уклоном 1:100 каждый. Работает узкими боковыми гранями. Клинья вводятся в пазы вала и ступицы ударом; образуют напряженное соединение. Распорная сила между валом и ступицей создается в касательном (тангенциальном) направлении. Применяют для валов диаметром свыше 60 мм при передаче больших вращающих моментов с переменным режимом работы (крепление маховика на валу двигателя внутреннего сгорания и др.). Изготавливаются по стандартам (ГОСТ 24069-80 и 24070-80), охватывающим два вида соединений: шпонки тангенциальные, нормальные для валов диаметром 60–1000 мм и усиленные для валов диаметром 100–1000 мм. Работают узкими гранями. Вводятся в пазы ударом. Создают напряженное соединение. Натяг между валом и ступицей создается в касательном (тангенциальном) направлении. При реверсивной работе ставят две пары тангенциальных шпонок под углом 120°. В современном производстве имеют ограниченное применение.

Достоинства тангенциальных шпонок:

- материал тангенциальной шпонки работает на сжатие;

- более благоприятная форма шпоночного паза в отношении концентрации напряжений.

Недостатком тангенциальной шпонки можно считать её конструктивную сложность.

Рис.8. Соединение тангенциальными шпонками

 

- специальные шпонки.

Шпонки всех основных типов стандартизованы и их размеры выбираются по ГОСТ 23360-78 (призматические); ГОСТ 24071-80 (сегментные); ГОСТ 24068-80 (клиновые).

 

Материал шпонок

Стандартные шпонки изготовляют из специального сортамента среднеуглеродистой чистотянутой стали с σв≥600 Мпа чаще всего из сталей 45, Ст6. В нагруженных соединениях применяют шпонки из легированных сталей (например, из стали 40Х с термической обработкой до 37-47 HRCЭ). С целью повышения прочности шпонок заготовки для их изготовления подвергаются улучшающей термической обработке. Однако твердость поверхности шпонок должна быть ниже таковой для соединяемых деталей. Термически обработанные шпонки шлифуют по рабочим граням.

Целесообразно, чтобы материал шпонки был менее прочным, чем материал вала и ступицы.

Допускаемые напряжения для шпоночных соединений обуславливаются характером нагрузки. Причиной разрушения этих соединений чаще всего бывает деформация смятия, на которую следует обращать особое внимание при выборе допускаемых напряжений.

Для закладки шпонок соединяемые детали, вал и ступица должны иметь шпоночные канавки. Шпоночные канавки выполняются: на валу под сегментную шпонку дисковой шпоночной фрезой, под остальные виды шпонок, кроме цилиндрической, либо дисковой, либо концевой (торцовой, пальцевой) шпоночными фрезами; паз в ступице выполняется либо протягиванием (инструмент – шпоночная протяжка, точность и качество изготовления паза высокие) либо долблением (точность на 1…2 квалитета ниже, чем при протягивании). Поэтому протягивание применяют в массовом и крупносерийном производстве, долбление – в индивидуальном, поскольку оно не требует специализированного инструмента (протяжки).

Допускаемые напряжения смятия в неподвижных шпоночных соединениях находят по формуле

[σ]смт/ n,

где σт - предел текучести наиболее слабого материала деталей - вала, шпонки или ступицы;

n - коэффициент безопасности. При точном учете нагрузок n =1,25; в остальных случаях n =1,5-2.

Допускаемое напряжение на срез определяют из соотношения

[τ]cp=(0,1-0,2)σт.

В связи с более точной расчетной схемой допускаемые напряжения для круглых и конических шпонок можно увеличить на 25-30% по сравнению с допускаемыми напряжениями для призматических шпонок.

Примерные допускаемые напряжения смятия для шпоночных соединений:

- при стальной ступице [σ]см = 130...200 Мпа;

- при чугунной [σ]см = 80... 110 Мпа. Большие значения принимают при постоянной нагрузке, меньшие при переменной и работе с ударами.

При реверсивной нагрузке [σ]см снижают в 1,5раза.

Так для призматических шпонок, выполненных из стали 45, при постоянной нагрузке и непрерывной работе соединения принимают [σ]см = (50…70) МПа, при периодической работе соединения с 50% загрузкой по времени - [σ]см = (130…180) МПа, при проверке соединения на работоспособность при предельных статических нагрузках (например, при запуске механизма) - [σ]см = 200 МПа. Для подвижных соединений с целью предупреждения образования задиров и заедания при осевом перемещении ступицы под нагрузкой допускаемые напряжения снижают ещё в 2…4 раза. При незакалённых поверхностях соединяемых деталей подвижного соединения принимают [σ]см = (10…30) МПа.

Допускаемое напряжение на срез шпонок [τ]ср= 70... 100 Мпа. Большее значение принимают при постоянной нагрузке.

Более точные значения допускаемых напряжений приведены в табл. 1.

 

Таблица 1. Допускаемые напряжения смятия [σ]см МПа

Тип соединений

Условия

эксплуатации

Твердость поверхности зубьев

до 350 НВ свыше 40 HRC,
Неподвижное, с осевой фиксацией а б в 35-50 60-100 80-120 40-70 100-140 120-200
Подвижное без нагрузки а б в 15-20 20-30 25-40 20-35 30-60 40-70
Подвижное под нагрузкой а б в – – – 3-10 5-15 10-20

 

Все основные виды шпоночных соединений можно разделить на две группы: ненапряженные и напряженные.

К ненапряженным относят соединения с призматическими (рис. 9, а),сегментными (рис. 9, б)и круглыми (рис. 9, в)шпонками. Шпоноч­ные пазы на всех валах выполняют дисковыми (рис. 10, а)или торцовыми (рис. 10, б)фрезами. В этих случаях при сборке соединений в деталях не возникает предварительных напряжений для обеспечения центрирования и исключения контактной коррозии ступицы устанавливают на валы с натягом. В ступицах деталей шпоночные пазы можно получить как на фрезерных, так и на долбежных станках. Размеры пазов определяют расчетным путем с учетом требований стандарта. Сборка и разработка ненапряжённого соединения (с призматической шпонкой) не требует приложения значительного усилия к сопрягаемым деталям. Детали, посаженные на призматическую шпонку, должны иметь крепления, предупреждающие их осевое перемещение.

Для сегментных шпонок пазы выполняют, как показано на рис. 6 и 9, б; для клиновых — паз на втулке обрабатывают с уклоном, равным углу наклона шпонки (рис. 9, г); для цилиндри­ческих — получают сверлением (рис. 9, в).

Рис. 9. Виды шпоночных соединений: а, б, в — нена­ пряженные соединения; г — напряженные соединения

Рис. 10. Изготовление пазов под установку шпонок

 

Рис. 11

Рис. 12. Соединения клиновыми шпонками

 

Рис. 13

 

Соединения, в которых применяют клиновые шпонки, относят к на­пряженным соединениям. В напряженных соединениях клином, вводимым между валом и ступицей, создаются значительные нормальные силы. Эти силы обеспечивают достаточное трение для передачи вращающего момента. Такое соединение может передавать не только крутящий момент, но и осевую силу (в одном направлении).

Для создания фрикционной связи между валом и ступицей используют клиновые шпонки, показанные на рис. 3, е—з (паз выполняют только во втулке). С нижней стороны шпонку (рис. 12, а)обрабатывают в виде вогну­той цилиндрической поверхности с радиусом, равным радиусу вала. Во втулке выполняют уклон. Вращающий момент передается за счет сил трения.

Клиновые фрикционные шпонки применяют для передачи незначительно­го вращающего момента, а также в тех случаях, когда необходимы частые перестановки деталей на валу в осевом направлении.

Шпонки на лыске (рис. 9, б)устанавливают в пазу втулки с уклоном 1:100. На валу фрезеруют плоскость (вал с лыской). Такая обработка ослаб­ляет вал значительно меньше, чем прямобочные пазы, однако эта шпонка может передать меньший момент, чем врезная.

Основное применение имеют ненапряженные соединения.

 

Рекомендации по конструированию шпоночных соединений

1. Перепад диаметров ступеней вала с призматическими шпонками назначают из условия свободного прохода детали без удаления шпонок из пазов.

2. При наличии нескольких шпоночных пазов на валу их располагают на одной образующей (рис.14).

3. Из удобства изготовления рекомендуется для разных ступеней одного и того же вала назначать одинаковые по сечению шпонки, исходя из ступени меньшего диаметра (рис.14).

Рис.14

 

Прочность шпоночных соединений при этом оказывается вполне достаточной, так как силы F 1 и F 2 действующие на шпонки, составляют:

но d 2 > d 1 ,следовательно, F 2 < F 1. Это доказывает, что, чем больше диаметр ступени вала, тем меньше усилие F передает шпонка этой ступени при одном и том же вращающем моменте Т.

4. При необходимости двух сегментных шпонок их ставят вдоль вала в одном пазу ступицы. Постановка нескольких шпонок в одном соединении сильно ослабляет вал, поэтому рекомендуется перейти на шлицевое соединение.

 

Рис. 15. К расчету на прочность соединения с призматическими шпонками

 

Таблица 2.Размеры (мм) призматических шпонок

Диаметр

вала d

Размеры сече­ний

шпонок

Глубина паза

Радиус закруг­ления

пазов R

Предельные разме­ры

длин l шпонок

b h вала t 1 втулки t 2 min max min max
свыше 12 до 17 5 5 3 2,3

0,16

0,25

10 56
» 17» 22 6 6 3,5 2,8 14 70
» 22» 30 8 7 4

3,3

18 90
» 30» 38 10 8

5

0,25

0,4

22 110
» 38» 44 12 8 28 140
» 44» 50 14 9 5,5 3,8

0,25

0,4

36 160
» 50» 58 16 10 6 4,3 45 180
» 58» 65 18 11 7 4,4 50 200
» 65» 75 20 12 7,5 4,9

0,4

0,6

56 220
» 75» 85 22 14

9

5,4

63 250
» 85» 95 25 14 70 280
» 95» 110 28 16 10 6,4 0,4 0,6 80 320

Примечание. Длины шпонок выбирают из ряда: 10; 12; 14; 16; 18; 20; 22; 25; 28; 32; 36; 40; 45; 50; 56; 63; 70; 80; 90; 100; 110; 125; 140; 160;180; 200.

 

Следовательно,

где Т — передаваемый момент, Нмм; d — диаметр вала, мм; (ht 1) — ра­бочая глубина паза, мм (см. табл. 2); l р — рабочая длина шпонки, мм (для шпонок с плоским торцом l р = l, со скругленными торцами lp = l - b; [σ]см - допускаемое напряжение (для чугунных ступиц [σ]см=60÷80 МПа, для стальных [σ]см=100÷150 МПа).

Расчетную длину шпонки округляют до ближайшего большего размера (см. табл. 2). Длину ступицы l ст принимают на 8... 10 мм больше длины шпонки. Если длина ступицы больше величины 1,5 d, то шпоночное соединение целесообразно заменить на шлицевое или соединение с натягом.

В тех случаях, когда длина шпонки получается значительно больше длины ступицы детали, устанавливают две или три шпонки под уг­лом 180 или 120°. При расчете многошпоночного соединения допускают, что нагрузка между всеми шпонками распределяется равномерно. Это технологически трудно, кроме того, ослабляются вал и ступица. Поэтому обычно многошпоночное соединение заменяют шлицевым.

Формула (3) носит условный характер, поскольку неравномерность распределения σсм по длине и высоте шпонки, вызванная погрешностями и деформациями, а также перекосом шпонки, обусловленным условием ее равновесия, учитывается назначением повышенных коэффициентов запаса.

Формула проектировочного расчета для определения рабочей длины l р приз­матической шпонки (шпонки со скругленными концами):

l p= l - b.

Для ответственных соединений призматическую шпонку проверяют на срез

где τ ср — расчетное напряжение на срез, МПа; b — ширина шпонки, мм; l р — рабочая длина шпонки, мм; [ τ ]ср — допускаемое напряжение на срез; для сталей с σв > 500 МПа для неравномерной (нижний предел) и спокой­ной нагрузок (верхний предел) принимают [ τ ]ср =60÷90 МПа.

Призматические шпонки – врезные. Рабочими гранями являются их боковые более узкие грани. Для облегчения сборки предусматривается радиальный зазор. Призматические шпонки по сравнению с клиновыми обеспечивают большую точность, а по сравнению с сегментными – меньше ослабляют вал, т.к. врезаются на меньшую глубину.

Применение для шпоночных соединений посадок колеса на вал с зазором недопустимо, а переходных посадок - крайне нежелательно.

Рекомендуется принимать следующие посадки

- для колес:

цилиндрических прямозубых Н7/р6 (H7/r6);

цилиндрических косозубых и червячных H7/r6 (H7/s6);

конических H7/s6 (H7/t6);

- в коробках передач H7/k6 (H7/m6).

Посадки с большим натягом (приведены в скобках) используют для колес реверсивных передач.

Выбор посадок «шпонка - паз вала» и «шпонка - паз втулки» производят в зависимости от желаемого вида соединения, который, в свою очередь, выбирают в зависимости от назначения посадки (для скользящих шпонок, для неподвижного соединения, для направляющих шпонок и т.п.) и серийности изготовления.

В большинстве случаев соединение шпонки с валом более плотное, чем с втулками. Это предотвращает выпадение шпонки из паза вала при монтаже и исключает ее передвижение при эксплуатации. Зазор же в соединении «шпонка - паз втулки» необходим для компенсации неточностей размеров, формы и взаимного расположения пазов.

Примеры обозначений призматических шпоночных соединений

1.Призматическая шпонка со скругленными торцами: ШПОНКА 18×11×100 ГОСТ 23360-70

2. Призматическая шпон­ка с плоскими торцами: ШПОНКА 2-18×11×100 ГОСТ 23360-70.

Рис. 17. Прямобочные зубья (шлицы)

 

Шлицевые валы изготавливаются в массовом производстве по технологии, аналогичной технологии изготовления зубчатых колёс (метод обкатки, способ – нарезание посредством червячных фрез), в штучном и мелкосерийном производстве используется метод копирования (требует наличия специального инструмента), а в случае отсутствия специнструмента валы изготавливаются методом фрезерования на универсальных фрезерных станках. Возможно также изготовление таких валов на обрабатывающих центрах с числовым программным управлением.

Шлицевые пазы в отверстиях ступиц при массовом производстве изготавливаются методом протягивания (инструмент – протяжка) или долблением специальными долбяками. В штучном производстве изготовление ведётся только долблением.

Наибольшее распространение в маши­ностроении имеют прямобочные зубчатые соединения (рис.17). Их применяют в неподвижных и подвижных соединениях. Стандартом предусмотрены три серии прямобочных зубчатых со­единений — легкая, средняя и тяжелая, отличающиеся одна от другой вы­сотой и числом зубьев (чаще применяют соединения с шестью-десятью зубьями).

Прямобочные шлицевые соединения различают также по спосо­бу центрирования:

- по наружному диаметру D (наиболее точный способ цен­трирования) (рис.18, а). Центрирование по наружному диаметру наиболее технологично и рекомендуется при твердости внутренней поверхности ступицы НВ 350. Калибровку центрирующих поверхностей ступицы выполняют протягиванием, а калибровку вала – шлифованием. Этот способ применяется при изготовлении неподвижных соединений в серийном и массовом производствах. Соединение (рис.18, а), во избежание термических короблений, требует чистовой протяжки ступицы после термообработки, поэ­тому твердость ступицы не может быть выше HRC=30.

- по внутреннему диаметру d (при закаленной ступице) (рис.18, б). Центрирование по внутреннему диаметру рекомендуется при высокой твердости материала ступицы, когда калибровка отверстия протяжкой невозможна. В этом случае центрирующие поверхности ступицы и вала доводят шлифованием. Применяется в индивидуальном и мелкосерийном производствах. Соединение (рис.18, б) требует шлифовки вала по посадочному диаметру на специальных станках, зато ступица может быть твердой, так как посадочный диаметр шлифуется на обычных внутришлифовальных станках.

- по боко­вым граням (при реверсивной работе соединения и отсутствии жестких требований к точности центрирования) (рис.18, в). Центрирование по боковым поверхностям обеспечивает более равномерное распределение нагрузки по зубьям. Рекомендуется для передачи больших переменных ударных нагрузок при пониженной точности центрирования. Соединение (рис.18, в) допускает твердые шлицы на валу и на ступице, однако для обеспечения сборки, считаясь с возможных короблением шлицов при закалке, зазоры в соединении должны быть увеличенными. Зазор в контакте поверхностей: центрирующих практически отсутствует, нецентрирующих значительный. Центрирование по боковым сторонам шлицов эффективно в том случае, когда точность совпадения геометрических осей не имеет существенного значения, но требуется обеспечить прочность соединения в процессе эксплуатации (например, карданные валы в автомобилях) или когда по условиям работы требуются минимальные зазоры по b (например, при действии знакопеременного момента). Этот способ не обеспечивает высокой точности центрирования и применяется редко.

Рис. 18. Центрирование прямобочных зубчатых соединений а – по наружному диаметру; б – по внутреннему диаметру;
в – по боковым граням; г – форма сечения ступицы; д, е – форма сечений вала исполнений б, в

Структура условного обозначения шлицевого прямобочного соединения должна иметь следующий вид:

где 1 - обозначение поверхности центрирования;

2 - числа шлицов соединения;

3, 6, 9 - номинальные размеры d, D и b;

4, 7, 10, 5, 8, 11 - обозначения полей допусков отверстий и валов по диаметрам d, D и по боковым сторонам шлицов b.

В обозначении допускается не указывать допуски нецентрирующих диаметров.

Допуски и посадки прямобочных шлицевых соединений приведены в таблицах.

Пример условного обозначения соединения, втулки и вала:

- для шлицевого соединения с числом шлицев z=8, внутренним диаметром d=42 мм, наружным диаметром D=46 мм, шириной шлица b=8 мм, с центрированием по d, с посадками по d - H7/f7 и по b - D9/h9:

- для отверстия этого же соединения:

d -8 × H 7 × 46 × 8 D 9,

- для вала этого же соединения:

d -8 × 42 f 7 × 46 × 8 h 9.

По ГОСТ 1139-80 предусматривается три серии соединений с прямобочным профилем зубьев: легкую, среднюю и тяжелую (табл. 3), которые отличаются высотой и числом зубьев z. Легкая серия рекомендуется для неподвижных соединений, средняя – для подвижных, при перемещении ступицы не под нагрузкой. Тяжелая серия имеет более высокие зубья с большим числом. Рекомендуется для передачи больших вращающих моментов, а также для подвижных соединений при перемещении ступицы под нагрузкой.

 

Соединения с эвольвентным профилем зубьев тоже стандартизованы и используются так же, как и прямобочные, в подвижных и неподвижных соединениях. Угол профиля образующей рейки α= 30°. Высота шлица (0,8… 1,0) m. Ножка зуба усилена. Соединения выполняются по ГОСТ 6033-80 с центрированием по боковым поверхностям зубьев (рис.19,а), реже по наружному диаметру (рис.19,б).

Рис.19. Эвольвентное зубчатое зацепление: а – центрирование по боковым граням;

Рис. 20. Шариковое шлицевое соединение

 

Допускаемый момент (Нм) для шарикового шлицевого соединения (твердость вала и ступицы не менее 60 НRС):

где Z шл – число рабочих выступов (шлиц);

l – рабочая длина соединения, мм;

d, D ср – диаметры шариков и окружности расположения центров шариков, мм.

Зубчатые соединения изготовляют из сталей с временным сопротивле­нием σв= 500 МПа.

 

Рекомендации по конструированию шлицевых соединений

1. Для подвижных соединений рекомендуют рабочую длину ступицы принимать не менее диаметра вала, т.е. lp < d. При коротких ступицах (lp < d) возможно защемление от перекоса при перемещении вдоль вала.

2. В длинных ступицах (lp >1,5 d) необходима расточка отверстия выхода стружки при протягивании (см. рис. 21).

3. Для облегчения входа протяжки и сборки соединения в отверстии предусматривают заводные фаски (см. рис. 21).

4. В соединениях, воспринимающих радиальные нагрузки (зубчатые и червячные колеса, звездочки, шкивы), зубья шлицевого соединения желательно располагать симметрично относительно венцов.

5. Для уменьшения изнашивания следует уменьшать зазоры в соединении, повышать точность изготовления и твердость рабочих поверхностей.

6. Число Z и размеры шлицев принимаются в зависимости от диаметра вала по соответствующему ГОСТ. Длина зубьев определяется длиной ступицы, а если ступица подвижная – величиной хода её перемещения.

 

Рис.21

 

Эффективными средствами повышения износостойкости шлицевых соединений являются:

1) уменьшение углов перекоса;

2) увеличение твердости контактирующих поверхностей путем азотирования, цементации, обдувки дробью;

3) уменьшение зазоров в шлицевом соединении, применение более плотных посадок, центрирование по вспомогательным поверхностям и затяжка соединений;

4) применение бочкообразных зубьев;

5) подача смазки в зону контакта;

6) снижение коэффициента трения путем покрытий (серебром, медью, кадмием, молибденом).

Основными критериями работоспособности шлицов являются:

- сопротивление боковых поверхностей смятию (расчёт аналогичен шпонкам);

- сопротивление износу при фреттинг-коррозии (малые взаимные вибрационные перемещения).

 

Рис.22

 

Рис.23

 

Образующие поверхности впадин на продольных разрезах вала и отверстия показывают сплошными основными линиями (рис.22, рис. 24).

На проекции вала и отверстия на плоскость, перпендикулярную их оси, а также в поперечных сечениях и разрезах окружности впадин показывают сплошными тонкими линиями (рис. 24).

Рис.24

 

Делительные окружности и образующие делительных поверхностей на изображениях деталей шлицевых эвольвентных соединений показывают штрихпунктирной тонкой линией (рис. 22-24).

Границу шлицевой поверхности вала, а также границу между шлицами полного профиля и сбегом показывают сплошной тонкой линией (рис. 22).

На изображениях, полученных проецированием на плоскость, перпендикулярную оси шлицевых вала и отверстия, изображают профиль одного шлица и двух впадин. Допускается изображать большее число шлицов и впадин.

Если секущая плоскость проходит через ось шлицевых вала и отверстия, то на разрезах и сечениях валов шлицы условно совмещают с плоскостью чертежа и показывают нерассеченными (см. рис. 22), а на разрезах и сечениях отверстий впадины условно совмещаются с плоскостью чертежа (см. рис. 23 и рис. 24).

При изображении шлицевых вала или отверстия в разрезе или сечении линии штриховки проводят:

- в продольных разрезах и сечениях – до линий впадин (см. рис. 22, 24, 25);

- в поперечных разрезах и сечениях – до линий выступов (см. рис. 24, 25).

Если секущая плоскость проходит через ось шлицевого соединения, то при его изображении на разрезе показывают только ту часть поверхности шлицов отверстия, которая не закрыта валом (рис. 101).

Рис.25

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 952; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.116.20 (0.173 с.)