Полная лекция о жизненном цикле изделий. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Полная лекция о жизненном цикле изделий.



Говоря о производстве изделий, целесообразно кратко познакомиться с тем, что такое тех процесс и как он разрабатывается.

Рис. 12. Последовательный способ обработки партии деталей

В таком случае, технологический цикл (T т(п)) изготовления партии деталей n на m операциях составит: , где ti – норма времени на i -ю операцию; m – количество операций; n – количество деталей в партии. С учетом всех перерывов, транспортных, складских и контрольных операций, а также естественных процессов, рассчитывают производственный цикл T ц(п).

, где с – количество мест рабочих; s – количество смен; q – продолжительность одной смены; tmo – время межоперационного пролеживания; te – время естественных процессов (в часах); t пз i – подготовительно-заключительное время.

При таком виде движения получается наибольшая длительность производственного цикла и, соответственно, хуже все производные технико-экономические показатели: использование производственной мощности, объем незавершенного производства, величина связывания оборотных средств, себестоимость продукции и др.

Чтобы сократить длительность цикла и достичь непрерывности производственного процесса применяют параллельно-последовательный способ. Его сущность заключается в разделении всей обрабатываемой партии на транспортные (передаточные) партии p. Подбор транспортных партий позволяет добиться непрерывности выполнения операций над партиями деталей, что обеспечивает возможность максимальной загрузки оборудования и рабочих.

При организации параллельно-последовательного движения возможны два варианта сочетания операций: (а) последующая операция продолжительнее предыдущей; (б) последующая операция менее продолжительна, чем предыдущая (рис. 13). Может быть и равенство операций.

Рис. 13. Варианты парного сочетания операций.

В первом варианте максимальное сочетание операций можно получить, передавая первую транспортную (передаточную) партию (p) на последующую операцию сразу же после окончания работы над ней. Все последующие транспортные партии будут пролеживать между этими операциями, ожидая освобождения следующего рабочего места (i +1), при этом обеспечивается непрерывная работа на всех рабочих местах. Во втором варианте для обеспечения непрерывной работы на последующей операции (i +1) необходимо ориентироваться на последнюю транспортную партию, определяя возможное время работы над ней на этой (i +1) операции. Чтобы обеспечить непрерывную загрузку рабочих мест операции (i +1), к этому времени необходимо закончить работу над всеми предшествующими транспортными партиями, осуществляя ее без перерывов. То есть необходимо следовать правилу, при котором, если ti > ti +1, то согласования проводят по конечной детали комплекта, а если t i > ti +1, то по начальной.

При этом сокращение технологического цикла на величину τ достигается за счет частичного запараллеливания работ на смежных операциях. Эта экономия может быть рассчитана по наиболее короткой из двух смежных операций: .

На рис. 14. представлено графическое изображение параллельно-последовательного вида движения.

Рис.1 4. Параллельно-последовательный способ обработки партии деталей.

В таком случае, технологический цикл составит:

, где ti кор – время короткой операции в парном сочетании, а производственный цикл параллельно-последовательного вида движения будет равен: , где ti кор – время короткой операции в парном сочетании.

Еще больше сократить технологический цикл можно, используя параллельный вид движения предметов труда по операциям (рис. 15), суть которого заключается в том, что транспортные партии или отдельные детали передаются на следующие операции сразу после их обработки на данной операции, чем достигается исключение пролёживания деталей. Однако по причине разности в продолжительности отдельных операций на соответствующих рабочих местах возникают простои оборудования и рабочих. Возникает проблема заполнения перерывов другими работами, что не всегда возможно, поскольку другая работа, как правило, требует переналадки оборудования.

Рис. 15. Параллельный способ обработки партии деталей.

В таком случае, технологический цикл при параллельном способе движения составит: , а производственный цикл будет равен: , где t гл – наибольшая длительность технологической операции детали, t гл = max ti.

 

 

Для любого вида движения деталей производственный цикл может быть также рассчитан и по формуле (5):

При аналитическом способе длительность производственного цикла простого процесса определяется по формуле (5)

Тц – длительность технологических операций, зависящая от вида движения объектов производства во времени (ч);

Тmo – средняя длительность межоперационного перерыва (ч);

m – количество операций в технологическом процессе;

Дк – количество календарных дней (дн.);

Др – количество рабочих дней (дн.);

Ксм – количество рабочих смен (см/дн);

Псм – средняя продолжительность смены (ч/см);

Те – длительность естественных процессов (ч).

Теория и пример расчёта длительности технологических и производственных циклов.

Данные, которые будут рассматриваться при выполнении раздела:

n – количество деталей в партии;

m – число операций обработки;

ti – норма времени i-ой операции;

Ci – количество рабочих мест на i-ой операции;

p - величина транспортной партии (или поштучно), шт;

t, C– время выполнения и число рабочих мест на наиболее продолжительной операции, т.е. на операции max(ti/Ci);

квадратные скобки показывают округление дробных чисел до целого в большую сторону.

При аналитическом способе длительность производственного цикла простого процесса определяется по формуле (5)

Тц – длительность технологических операций, зависящая от вида движения объектов производства во времени (ч);

Тmo – средняя длительность межоперационного перерыва (ч);

m – количество операций в технологическом процессе;

Дк – количество календарных дней (дн.);

Др – количество рабочих дней (дн.);

Ксм – количество рабочих смен (см/дн);

Псм – средняя продолжительность смены (ч/см);

Те – длительность естественных процессов (ч).

Задание

Размер партии деталей n = 10 шт. Размер передаточной партии р = 2 шт. Кол-во операций m = 4. Длительность операции ti, кол-во рабочих мест Ci.

t 1 = 20 мин. C1=1; t2 = 15 мин. C2=1; t3 = 10 мин. C3=1; t4 = 40 мин. C4=2

Среднее межопера­ционное время tmо~ 15 мин; представляет собой обязательный контроль после каждой операции, Длительность естественных процессов tе= 12 часов.

Кол-во календарных дней – 365 Кол-во рабочих дней –242

Продолжительность смены – 7,9 ч/см Коэффициент сменности – 1 см/дн

Построить и рассчитать циклы.

Производство изделий.

 

Производственный процесс состоит из следующих процессов:

- основные — это технологические процессы, в ходе которых происходят изменения геометрических форм, размеров и физико-химических свойств продукции;
- вспомогательные — это процессы, которые обеспечивают бесперебойное протекание основных процессов (изготовление и ремонт инструментов и оснастки; ремонт оборудования; обеспечение всеми видами энергий (электроэнергией, теплом, паром, водой, сжатым воздухом и т.д.));
- обслуживающие — это процессы, связанные с обслуживанием как основных, так и вспомогательных процессов и не создающие продукцию (хранение, транспортировка, тех. контроль и т.д.).

В условиях автоматизированного, автоматического и гибкого интегрированного производства вспомогательные и обслуживающие процессы в той или иной степени объединяются с основными и становятся неотъемлемой частью процессов производства продукции.

Технологические процессы, в свою очередь делятся на фазы.

Фаза — комплекс работ, выполнение которых характеризует завершение определенной части технологического процесса и связано с переходом предмета труда из одного качественного состояния в другое.

В машиностроении и приборостроении технологические процессы в основном делятся на три фазы:
- заготовительная;- обрабатывающая; - сборочная.

Технологический процесс состоит из последовательно выполняемых над данным предметом труда технологических действий - операций.

Операция — часть технологического процесса, выполняемая на одном рабочем месте (станке, стенде, агрегате и т.д.), состоящая из ряда действий над каждым предметом труда или группой совместно обрабатываемых предметов.

Операции, которые не ведут к изменению геометрических форм, размеров, физико-химических свойств предметов труда, относятся не к технологическим операциям (транспортные, погрузочно-разгрузочные, контрольные, испытательные, комплектовочные и др.).

Производственный цикл — календарный период времени с момен­та запуска сырья и материалов в производство до момента выхода го­товой продукции, приемки ее службой технического контроля и сда­чи на склад готовой продукции, который измеряется в днях, часах.

Производственный цикл имеет две стадии:

· время протекания процесса производства

· время перерывов в процессе производства

Время протекания процесса производства, которое называется технологическим циклом, или рабочим периодом, включает:

· время на подготовительно-заключительные операции

· время на технологические операции

· время на протекание естественных технологических процессов

· время на транспортировку в процессе производства

· время на технический контроль

Время перерывов в процессе производства — время, в течение ко­торого не осуществляется никакого воздействия на предмет труда и не происходит изменения его качественной характеристики, но про­дукция еще не является готовой и процесс производства не закон­чен. Время перерывов в процессе производства включает:

· время межоперационного пролеживания

· время межсменного пролеживания

 

Логистика и производств о.

Логистика на Российских предприятиях в настоящее время имеет, как правило, дело с тем типом производства, который существовал до неё. Но в будущем, когда ЛС будут внедрены на отечественных предприятиях, ЛС сможет влиять и на изменение типа производства предприятия.

Каждое предприятие имеет независимо от его значимости свой тип производства.

Тип производства представляет собой комплексную характеристику технических, организационных и экономических особенностей производства, сложностью и устойчивостью изготовляемой номенклатуры изделий, размером и повторяемостью выпуска продукции.

В отечественной теории и практике выделяют три основных типа производства: единичное, серийное и массовое.

Единичное производство характеризуется: малым объемом выпуска одинаковых изделий, повторное изготовление которых, как правило, не предусматривается; большой номенклатурой выпускаемых изделий, специализация участков – технологическая; оборудование – универсальное.

Серийное производство характеризуется производством изделий периодически повторяющимися партиями, нескольких однородных типов изделий; специализация участков – предметная, предметно-групповая; оборудование – специализированное; рабочие конкретных профессий средней квалификации.

Массовое производство характеризуется большим объемом выпуска изделий, непрерывно изготовляемых продолжительное время, в течение которого на большинстве рабочих мест выполняется одна рабочая операция; подетальной специализацией участков; специализированным оборудованием. Рабочие – операторы, низкой квалификации.

С точки зрения ЛС в современных рыночных условиях, применение массового типа производства крайне нецелесообразно, несмотря на его высокую эффективность, поскольку предполагается выпуск однородной продукции в течение длительного времени с преобладанием рынка продавца и неограниченного спроса. А настоящее время – время потребителя.

Машиностроительные предприятия с полным технологическим циклом выпускают изделия, основные этапы жизненного цикла которых представлены на рис. 6 и 7.

На рис. 6. представлены схемы жизненного цикла изделия, соответствующие предприятиям, где только одна управляющая система-РППП, а на Рис.7. схема ЖЦИ, где две управляющих системы, одна из которых «логистическая производственная система» (ЛПС).

На рис.7. по сравнению с рис.6. появились дополнительные этапы CAD,CAE и CAM, которые, хотя и применяются в системе управления РППП, но не являются для этой системы обязательными. Но в настоящее время в мировой практике CAD,CAE и CAM являются атрибутами ЛПС.

 

рис. 6. Схема жизненного цикла изделия, соответствующие предприятиям, где только одна управляющая система-РППП

 

Рис.7. Жизненный цикл изделия на предприятии с двумя управляющими системами.

 

Итак: управление всеми выше перечисленными данными и программами в едином информационном пространстве на протяжении всех этапов жизненного цикла изделий возлагается на систему PLM (Product Lifecycle Management).

Примеры PDM

В настоящее время наиболее известными PDM-системами являются ENOVIA и SmarTeam (Dessault Systemes), Teamcenter (Unigraphics Solutions), Windchill (PTC), mySAP PLM (SAP), BaanPDM (BAAN) и российские системы ЛОЦМАН-PLM 2013 - Управление инженерными данными и жизненным циклом изделия; ЛОЦМАН-КБ. Управление электронным архивом КД; ЛОЦМАН-PLM 2013, управление инженерными данными и жизненным циклом изделия, PDM StepSuite (НПО "Прикладная логистика"), Party Plus (Лоция Софт).

Основные разработчики САПР в машиностроении считают целесообразным предлагать комплексные системы PLM, в состав которых входят как модули CAD/CAM/CAE, так и PDM.

В известной программе SolidWorks используется PDM/Works, в SolidEdge — заимствованная система управления документами SharePoint Portal Server.

Компания Consistent Software разрабатывает оригинальную PDM-систему OutdoCS PDM и предлагает комплексную систему PartY Plus, разработанную фирмой Лоция Софт. Система PartY Plus предназначена для управления информацией об изделиях, проектах, сооружениях на протяжении всех этапов их жизненного цикла.

Указанные PDM-системы являются полностью самостоятельными продуктами, не привязанными только к «своей» CAD- системе, но всё равно фирмы-производители стараются продать вместе с PDM и соответствующий CAD/CAM софт. Поэтому внедрение на российских предприятиях современных западных PDM-систем (отечественные PDM-системы, несмотря на относительную дешевизну, пока еще не могут в полной мере конкурировать со своими западными прототипами из-за ограниченных функциональных возможностей) превращается в дорогое удовольствие, сегодня доступно только небольшому числу промышленных гигантов.

Как правило, почти все эти фирмы выпускают свои PDM-системы параллельно с другим программным обеспечением, главным образом - CAD/CAM-системами. Так, например, можно назвать выпускаемые ими такие CAD/CAM-PDM-продуктов, как CATIA - ENOVIA (IBM/Dassault), Unigraphics - iMAN (UGS), Pro/Engineer - Windchill (PTC).

Универсальная PDM-система SmarTeam

В последние годы на рынке PDM-систем появляется компания Smart Solutions со своей новейшей (и практически самой дешёвой) разработкой - PLM/SCM/PDM/CRM-системой SmarTeam.

Smart Solutions была основана в 1995 году, и в отличие от других компаний с первых дней своего существования сосредоточила усилия на разработке PDM-решений для малого, среднего и крупного бизнеса в сфере промышленного производства С другой стороны, над разработчиками SmarTeam не довлела привязанность к собственной CAD/CAM-системе (ее просто нет). Это позволило создать широко универсальную PDM-систему, которая одинаково хорошо интегрируется практически со всеми известными CAD/CAM-системами, с офисными приложениями Microsoft, с различными ERP-системами, позволяет просматривать файлы более 200 различных формато, такая «всеядность» PDM-системы особенно необходима для России.

В базовый комплект системы SmarTeam входят модуль создания и редактирования моделей, СУБД (Interbase или Oracle), визуализатор, модуль сопряжения с различными САПР (в список входят SolidWorks, MDT, Inventor, Microstation, Solid Edge, AutoCAD 14). Базовый комплект может расширяться путем добавления модулей документооборота, интеграции с ERP, SCM и CRM-системами, взаимодействия с партнерами через Internet и др. Состав системы SmarTeam и ее связи с CAD и ERP-системами иллюстрирует рис. 4.

SmarTeam состоит из ряда продуктов, образующих четыре «орбитальных» уровня (рис. 4.).

Центр системы -Core Solutions, является базовым продуктом SmarTeam, который связан с другими элементами системы. Именно здесь, совершается создание, преобразование, структурирование и накопление всей совокупности информации об изделии в процессе его движения по жизненному циклу от идеи разработчиков до утилизации.

 Рис.4. Структурная схема концепции построения системы SmarTeam

Вместе с тем, имея чрезвычайную гибкость настройки, SmarTeam представляется разработчиками как PDM-решение, готовое к немедленному использованию ("коробочное решение").

Cals-технологии и конструкторская подготовка производства

Разработку ТЗ можно считать одной из первых ступенек конструкторской подготовки производства, содержащей кроме ТЗ следующие стадии: эскизный проект, технический проект, рабочую документацию.

 Эскизный проект представляет собой совокупность конструкторских документов, которые дают представление об устройстве и принципе работы изделия, а также содержат данные, определяющие назначение, параметры и габаритные размеры нового изделия. Сущность его заключается в разработке первоначального наброска будущей продукции. Он должен быть защищен. Если изделие простое, то эта стадия может отсутствовать.

Технический проект - совокупность КД, которые содержат окончательные технические решения, дающие полное представление об устройстве проектируемого изделия, и исходные данные для разработки рабочей документации. На этой стадии выполняются следующие работы:

расчеты на прочность, жесткость, долговечность и т.д.;

разработка компоновочных чертежей, чертежей агрегатов, сборочных единиц и ответственных деталей;

макетирование;

составление технических условий на эксплуатацию;

экономическое обоснование проекта.

3. Рабочая документация - в ее состав входят:

чертежи, схемы и спецификации всех сборочных единиц и комплектов;

технические условия и документы, регламентирующие условия эксплуатации и ремонта машин.

Содержание конструкторской документации определено Единой системой конструкторской документации (ГОСТ 2.101-68, ГОСТ 2.109-68 и др.)

 

При этом современная разработка КД уже не мыслится без применения систем автоматического проектирования (САПР), особенно CAD-систем.

Существует несколько вариантов геометрического представления детали в CAD системе. Выбор того или иного варианта зависит от возможностей системы.

Среди CAD-систем различают системы нижнего, среднего и верхнего уровней. Первые из них иногда называют «лёгкими» системами, они ориентированы преимущественно на 2D-графику, сравнительно дёшевы, основной аппаратной платформой для их использования являются персональные ЭВМ.

Системы верхнего уровня, называемые также «тяжёлыми», дороги, более универсальны, ориентированы на геометрическое твёрдотельное и поверхностное 3D-моделирование. Оформление чертёжной документации в них обычно осуществляется с помощью предварительной разработки трёхмерных геометрических моделей. Системы среднего уровня по своим возможностям занимают промежуточное положение между «лёгкими» и «тяжёлыми» системами.

К важным характеристикам CAD-систем относятся параметризация и ассоциативность. Параметризация подразумевает использование геометрических моделей в параметрической форме, т.е. при представлении части или всех параметров объекта не константами, а переменными. Параметрическая модель, находящаяся в базе данных, легко адаптируется к разным конкретным реализациям и потому может использоваться во многих конкретных проектах. При этом появляется возможность включения параметрической модели детали в модель сборочного узла с автоматическим определением размеров детали, диктуемых пространственными ограничениями. Эти ограничения в виде математических зависимостей между частью параметров сборки отражают ассоциативность моделей.

Разработчики, применяя информацию и описания ранее выполненных удачных разработок компонентов и устройств, многих составных частей оборудования, проектировавшихся машин и систем, хранящихся в базах данных сетевых серверов, могут значительно сократить время проектирования и повысить его качественный уровень.

Такая информация является доступной любому пользователю CALS-технологиями. Такая доступность обеспечивается согласованностью форматов, способов и руководств в разных частях общей интегрированной системы.

К числу мировых лидеров в области CAD/CAM/CAE-систем верхнего уровня относятся системы Unigraphics (компания EDS), CATIA (Dessault Systemes), Pro/Engineer (РТС).

Система Unigraphics – универсальная система геометрического моделирования и конструкторско-технологического проектирования, в том числе разработки больших сборок, прочностных расчётов и подготовки конструкторской документации. Система многомодульная.

Значительно дешевле обходится приобретение САПР среднего уровня. В России получили распространение системы компаний Autodesk, Solid Works Corporation, Beantly, Топ Системы, Аскон, Интермех, Вее-Pitron и некоторых других. Все эти системы имеют под-системы: конструкторско-чертёжную 2D, твёрдотельного 3D-моделирования, технологического проектирования, управления проектными данными, ряд подсистем инженерного анализа и расчёта отдельных видов машиностроительных изделий, а также библиотеки типовых конструктивных решений.

В основном, все современные системы CAD позволяют построить пространственную геометрическую модель проектируемого изделия, что является центральной задачей компьютерного проектирования, учитывая последующую разработку ТП в CAM). Именно эта модель используется в CAD/CAM-системе для дальнейшего решения задач формирования чертежно-конструкторской документации, проектирования средств технологического оснащения, разработки управляющих программ для станков с ЧПУ.3). Кроме того, эта модель передается в САЕ-системы и используется там для проведения инженерных исследований. По компьютерной модели, с помощью методов и средств быстрого прототипирования, может быть получен физический образец изделий.

Широкое распространение в России и за рубежом из CAD –систем получило ПО машиностроительных САПР компании Autodesk.

Линия современных программных систем конструкторского проектирования фирмы Autodesk включает ряд систем, среди которых наиболее развитыми следует считать системы AutoCAD Mechanical Desktop и Inventor.

Среди САПР среднего уровня, наряду с продуктами зарубежных фирм, неплохо зарекомендовали себя системы отечественных разработчиков – это, прежде всего, системы Компас (компания Аскон) и T-Flex CAD (Топ Системы).

Реализована двунаправленная ассоциативность, т.е. изменение параметров чертежа автоматически вызывает изменение параметров модели и наоборот и т.д.

Наличие общей базы данных об изделии позволяет организовать процесс параллельного проектирования, когда каждый специалист использует данные об изделии для решения своих задач. Даже в тех случаях, когда последующий проектант использует результаты работы предыдущего, применение параллельного проектирования может заметно снизить общее время разработки.(рис. 5.).

Рис. 5. Схема параллельного проектирования

Для решения различных инженерных задач на стадии конструкторской подготовки производства применяют САЕ системы (computer-aided engineering) - компьютерная поддержка инженерных расчетов).

Функции САЕ-систем (см. п.п.) довольно разнообразны, так как связаны с проектными процедурами анализа, моделирования, оптимизации проектных решении. В состав машиностроительных САЕ-систем прежде всего включают программы для выполнения следующих процедур: моделирование полей физических величин, в том числе анализ прочности,; расчёт состояний моделируемых объектов и переходных процессов в них средствами макроуровня; имитационное моделирование сложных производственных систем на основе моделей массового обслуживания и сетей Петри.

Проблема обмена информацией между разнотипными CAD-системами решается путём использования языков и форматов, принятых в CALS-технологиях, хотя для неискажённой передачи геометрических данных с помощью промежуточных унифицированных языков приходится преодолевать определённые трудности.

Cals-технологии в о сновных этапах технологической подготовки производства

На этапе подготовки производства изготовитель должен выполнить работы, обеспечивающие технологическую готовность предприятия к изготовлению продукции в оговоренные контрактом (договором) сроки в заданных объемах, в соответствии с требованиями КД и законодательства Российской Федерации, а также следующие основные работы:

предварительную проработку технической документации, в которой участвует большинство служб завода, выполняются технологический контроль чертежей и проработка их на технологичность;

разработку межцеховых технологических маршрутов (расцеховка), которые устанавливают последовательность прохождения заготовок, деталей, сборочных единиц по производственным подразделениям. В условиях единичного и мелкосерийного производства, при универсальном оборудовании и оснастке, высокой квалификации рабочих разработка маршрутной технологии часто оказывается достаточной для изготовления деталей и сборки изделия; в серийном и массовом типах производства необходима разработка подробных операционных процессов. Организационная схема проектирования зависит от оригинальности технологических решений. Имеется порядок разработки рабочих технологических процессов на базе типовых решений и процессов, с индивидуальными технологическими решениями;

разработку ТД (или корректировку полученной ТД) –технологических процессов механообработки, сборки, штамповки, литья, термообработки и др.- для изготовления деталей и узлов изделия, на изготовление продукции для поставки, контроля и испытаний;

отработку конструкции на технологичность с учетом стандартов ЕСТД;

заключение договоров (контрактов) с поставщиками комплектующих изделий и материалов и лицензионных соглашений с правообладателями на использование объектов промышленной и интеллектуальной собственности;

подготовку и представление в территориальные органы Госстандарта России каталожного листа продукции в установленном порядке.

Работа регламентируется стандартами Единой системы технологической подготовки производства (ЕСТПП). Она определяет порядок организации и управления ТПП, предусматривает разработку и широкое применение прогрессивных технологических процессов, использование унифицированной технологической оснастки и оборудования, средств механизации и автоматизации производственных процессов, инженерно-технических и организационно-управленческих работ.

Технологическое решение - проектное решение, в котором определены значения параметров технологических процессов изготовления данного объекта в заданных условиях и с заданными характеристиками.

Организационное решение - проектное решение, в котором определена форма (порядок) соединения элементов производства для обеспечения изготовления заданного объекта в заданных условиях и с заданными характеристиками.

Содержание и объем ТПП зависят от типа производства, конструкции и назначения изделия.

Программы к станкам с ЧПУ разрабатываются в отделе главного технолога. Как правило, это те программы, которые разрабатывались ещё до появления логистики и требовали большой затраты времени технолога и выполнения большого объёма документации. Разработка управляющих программ к современным станкам ЧПУ с применением CAМ технологий уже больше вписывается в логистические системы управления, чем в регламентированные ранее схемы разработки технологических процессов. САМ технологии позволяют максимально сократить время технологической подготовки производства.

SCADA

В состав АСУТП входит система SCADA (Supervisory Control and Data Acquisition), выполняющая диспетчерские функции (сбор и обработка данных о состоянии оборудования и технологических процессов) и помогающая разрабатывать ПО для встроенного оборудования. Для непосредственного программного управления технологическим оборудованием используют системы CNC (Computer Numerical Control) на базе контроллеров (специализированных компьютеров, называемых промышленными), которые встроены в технологическое оборудование с числовым программным управлением (ЧПУ). Системы CNC называют также встроенными компьютерными системами.

Обобщенная схема АСУ ТП изображена на рис. 8. Можно выделить три уровня: контроллеры нижнего уровня, контроллеры верхнего уровня.

1. сбор данных о состоянии технологического процесса;

2. управление работой исполнительных механизмов;

3. автоматическое логическое управление.

Рис. 8 Обобщенная схема АСУ ТПКонтроллеры нижнего уровня осуществляет следующие функции:

1. сбор данных о состоянии технологического процесса;

2. управление работой исполнительных механизмов;

3. автоматическое логическое управление.

Данные с контроллеров нижнего уровня могут поступать в офисную сеть диспетчерского уровня непосредственно или через контроллеры верхнего уровня. Контроллер верхнего уровня выполняет следующие функции: 1. сбор данных с контроллеров нижнего уровня;

2. обработка данных (масштабирование, к примеру);

3. синхронизация работы подсистем АСУ ТП;

4. создание архивов;

5. сохранение работоспособности при нарушении связи между контроллерами верхнего уровня и диспетчерским пунктом;

6. резервирование каналов, по которым происходит передача данных.

В качестве контроллеров верхнего уровня могут использоваться концентраторы, коммуникационные контроллерымикро–SCADA— программное обеспечение АСУ ТП, реализующее автоматическое управление и контроль технологического процесса, специализирующееся на автоматизации в определенной области.

Диспетчерский уровень представлен в первую очередь операторскими станциями, а также рабочими местами специалистов, сервером баз данных

Следует отметить тенденции включения ни так давно появишихя систем SCADA в системы комплексной автоматизации предприятия CALS. Это обеспечивает точную, своевременную информацию на каждом уровне производства.

В машиностроительном производстве SCADA-системы закрывают цеховой уровень автоматизации, связанный, прежде всего, с получением и визуализацией информации от программируемых контроллеров, распределенных систем управления, станков с ЧПУ.

SCADA -система — это инструментальная программа, обеспечивающая создание программного обеспечения для автоматизации контроля и управления технологическим процессом в режиме реального времени. Основная цель создаваемой с помощью SCADA программы — дать оператору, управляющему технологическим процессом, полную информацию об этом процессе и необходимые средства для воздействия на него

Основная задача SCADA – это сбор информации о множестве удаленных объектов, поступающей с пунктов контроля, и отображение этой информации в едином диспетчерском центре. Кроме этого, SCADA должна обеспечивать долгосрочное архивирование полученных данных. При этом диспетчер зачастую имеет возможность не только пассивно наблюдать за объектом, но и ограниченно им управлять, реагируя на различные ситуации.

Под SCADA–системой следует понимать специализированное программное обеспечение, реализующее интерфейс между человеком и системой управления, коммуникацию с внешним миром. Широкое распространение получили следующие SCADA–системы: Genesis, Trace Mode, InTouch, Citect, IGSS.

1. сбор информации о контролируемых технологически параметрах;

2. сохранение принятой информации в архивах;

3. вторичная обработка принятой информации;

4. графическое представление хода технологического процесса;

5. прием команд от оператора;

6. регистрация событий, связанных с контролируемым процессом;

7. оповещение персонала об аварийных ситуациях на производстве;

8. создание разного рода документов о ходе процесса;

9. автоматическое управление ходом технологического процесса.

 На многих производствах необходимо контролировать тот или иной параметр для исключения аварии, выхода из строя оборудования.

SCADA–системы позволяют контролировать значения параметров производственного

процесса. Одного только контроля параметров не достаточно, необходимо во многих случаях сообщать оператору об аварийной ситуации, близости значения параметра к аварийному значению, вести учет всех имевших место аварийных ситуаций.

Все современные SCADA–системы позволяют работать с тревогами (алармы) и событиями.

Тревога (аларм)— сообщение, предупреждающее оператора о возникновении ситуации близкой к критической, которая может привести к аварии, выходу из строя оборудования и требует внимания и, зачастую, срочного вмешательства оператора.

Событие— сообщение системы, которое не требует срочно вмешательства оператора.

SCADA–системы позволяют создавать различные отчеты. Под отчетом следует понимать документ, содержащий сведения о состоянии технологических процессов, разного рода событиях и тревогах.

Можно выделить два вида отчетов: отчет тревог, который рассматривался при рассмотрении тревог, и отчет о состоянии производства.

Среди всего многообразия SCADA–систем можно выделить Trace Mode,созданную на территории Российской Федерации. Перед другими SCADA–системами у нее следующие преимущества на территории РоссийскойФедерации:1. осуществляется поддержка в Российской Федерации;2. вся документация на русском языке;

3. полностью русифицированный программный продукт;4. поддерживает не только IBM совместимые зарубежные

контроллеры MicroPC, ADAM, PCL, MIC2000, но и отечественные.

 

Единая система управления ТОиР

Для сложного изделия (например, летательного аппарата, корабля, многокоординатного станка с ЧПУ, гибкого модуля, робототехнического комплекса и т.п.), имеющего длительный срок использования (10-20 лет), затраты на постпроизводственных стадиях ЖЦ, связанные с поддержанием изделия в работоспособном состоянии (состоянии готовности к использованию), могут быть равны или даже превышать затраты на приобретение



Поделиться:


Последнее изменение этой страницы: 2021-02-07; просмотров: 201; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.130.13 (0.133 с.)