Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аналіз напруженого стану при одновісьовому розтязі. Максимальні дотичні напруження.

Поиск

Лінійний напружений стан має місце в точках стержня, який розтягують або стискують поздовжньою силою. Розглянемо стержень призматичної фор­ми з площею поперечного перерізу А, навантажений - зосередженими роз­тягуючими силами F /рис. 4/. На достатній відстані від місця при­кладання сили /відповідно до принципу Сен-Венана /виберемо точку В і проведемо через цю точку поперечний переріз. Нормальна напруга в будь-якій точці цього перерізу,в тому числі і в точці В, визначається за отриманою раніше формулою  

,                                                  (11)

 

 

Рис. 4.  До визначення напруги в точці В при лінійному напруженому стані.

 

          

 

Рис. 5. Зображення лінійного напруженого стану: а – в просторі, б – на площині.

 

Оскільки при розтягу стерж­ня його напружений стан одно­рідний, то для дослідження на­пруження на різних похилих площад­ках уявно вирізаний паралеле­піпед може бути довільних роз­мірів, в тому числі і такий, що мав за грань поперечний переріз стержня А0. На верхній і ниж­ній гранях паралелепіпеда па­ралельних площині А0, діють розтягуючі напруги, які визна­чаються формулою /11/. На всіх бічних гранях нормальні напру­ги відсутні, тому що відсутні діючі сили. Дотичні напруження на всіх гранях дорівнюють нулю, оскільки розтягуючі сили F не утворюють зсуву виділених граней паралелепіпеда.

Оскільки на гранях паралелепіпеда відсутні дотичні напруги, то нормальні напруження тут будуть головними, і відповідно до формули /11/ дістанемо σ1 = у = F/A0, σ2 = 0, σ3 = 0 тобто кожна точка виділеного паралелепіпеда перебуває в лінійному напруженому ста­ні /рис.5 а/. Надалі елемент, що перебуває в лінійному або плоскому напруженому стані, будемо зображати перерізом паралелепіпеда у вигляді плоскої фігури /рис.5,б/.

У такий спосіб зображення лінійного і плоского напруже­них станів можна ввести більш просте правило знаків для до­тичних напружень, не пов’язане з вибором системи координат: дотичні напруження на площині додатні, якщо вони намагають­ся повернути розглядуваний елемент відносно довільної точки, взятої всередині елемента за ходом годинникової стрілки, і від’ємні – якщо проти годинникової стрілки.

Розглянемо як розподілені напруження на площині похилого перерізу. Для цього проведемо площину, нормаль nб, до якої віссю х паралелепіпеда утворює кут α /рис. 6/ На похилій площині Аα повну напругу Рα, зумовлену силами F, можна визначати за формулою:

                           (12)

Оскільки площи­на  (12) зв'язана з А0 співвідношенням  , то:                                             (13) 

 

 



         Рис. 6. Визначення напружень σα α при лінійному напруженому стані.

 

де враховано, що F/A0 = σ1. Проекція повної напруги  на нормаль nα утворює нормальне напруження   , або:

                                   (14) 

 

Користуючись рівнянням /14/, можна простежити за зміною зна­чень нормального напруження на площадках, що мають різний нахил. Так, із збільшенням кута  від 0 до 90° напруження σ зменшується від значення   при α = 0 до нуля при α = 90°.

 Отже, най­більше значення нормального напруження маємо на головній площадці, де (при α=0).

Проекція напружень  на площадку  утворює на ній дотичну напруження , яку можна визначити за формулою ,   або:

                             (15) 

 

Відповідно до формули (15) найбільшу дотичне напруження виникає на площадці з sin 2α = 1, тобто для якої 2α = 90° і α = 45°. Значить, на площадці, нормаль до якої з напрямом поздовжньої осі х утворює кут 45°, дотичні напруження досягають найбільших значень

/16/

 

При стиску головні напруження мають значення σ1 = σ2 = 0; σ3 = -F /A0. Тоді напружений стан у точці стержня визначається, як і при розтягу, лише в них замість σ1 не­обхідно підставляти σ3.

 

Приклад 1. Визначити нормальні і дотичні напруги в точці В перерізу 1-1 і в точці С перерізу 2-2 стержня, якщо його площа поперечного перерізу Ао = 20 • 10-4 м2, α1  = 300, α2 = 40°. Стер­жень навантажений зовнішніми силами F1 = 40 кН і F2 = 72 кН так, як показано на рис.2.6,а.

 

Розв'язання. Перш за все розбиваємо стержень на ділянки і, вико­ристовуючи метод перерізів, визначимо значення поздовжніх сил N1, N2 на кожній із них: N1 = F1 - F2 = 40 – 72 = - 32 кН /стиск/. Побудуємо епюру нормальних сил /рис 7,б/.

Знайдемо нормальну напругу в поперечному перерізі, що проходить через точку В:

 

 

Зазначимо, що оскільки на даній ділянці виділений елемент підлягає стиску, то в точці В маємо напругу σх = σ3.

 Аналогічно напруга в поперечному перерізі, що проходить через точ­ку С, буде

 

 

Елементи, виділені на ділянках точок В і С, головні напруги σ3 і σ1 , а також похилі площини та невідомі поки напруження на них, показані на рис.2.7, 2.8. Визна­чимо нормальні  і   дотичні  напруження на похи­лій площині, утвореній перері­зом 1-1.

 

 

Рис. 7. Епюра нормальної сили N в стержні навантаженому силами F1 і F2

 

  

 

 

Рис.8. Схема до визначання напружень  і  в точці В стержня, зображеного на рис.7

 

Рис. 9. Схема до визначення напруг  та  в точці С стержня, зображеного на рис.7.

 

Відносно напряму осі х /або  / нормаль nα, утворює кут α1, який відраховується за годинниковою стрілкою. Тому, підставляючи кут α1 в формули /14/ і /15/, його необхідно брати із знаком "мінус". Тоді за формулами /14/ і /15/

 

 

Аналогічно, враховуючи знак кута α2, визначаємо напруження на похилій площині, яка утворена перерізом 2-2:

 

Питання для самоконтролю

 

1. Дати визначення лінійного, плоского і об'ємного напружених станів. Навести приклади.

2. Які правила знаків вводяться для нормальних і дотичних напруг?

3. Доведіть, що сума нормальних напруг на двох довільних взаємно перпендикулярних площадках, що проходять через дану точку навантаже­ного тіла, величина стала.

4. Що таке головні площини і головні напруги?

 


Заняття № 37

Тема: Розтяг і стиск

План

1. Випробування матеріалів на розтяг. Діаграма розтягу зразків з низьковуглецевої сталі, її характеристики.

2. Характеристики пластичності.

3. Закон розвантаження і повторного навантаження.

4. Діаграми розтягу і стиску крихких і пластичних матеріалів.

    ЛІТЕРАТУРА основна

ЛІТЕРАТУРА додаткова

Студенти повинні знати: характеристики механічних властивостей матеріалів, закон навантаження, розвантаження та повторного навантаження матеріалів, значення небезпечних

Студенти повинні вміти: визначати характеристики міцності та пластичності, визначати небезпечні напруження.



Поделиться:


Последнее изменение этой страницы: 2020-11-11; просмотров: 157; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.129.8 (0.01 с.)